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FORE_RD

This report, prepared by the Dynamics and Loads Section, Martin Marietta

Corporation, Denver Division, under Contract NAS5-I1996, presents the re-

suits of a study whose purpose was to develop a computer program system

for dynamic simulation and stability analysis of passive and actively

controlled spacecraft. The study was performed from May 1973 to April

1975 and was administered by the National Aeronautics and Space Admin-

istration, Goddard Space Flight Center, Greenbelt, Maryland, under the

direction of Mr. Joseph P. Young.

The report is published in four volumes:

Volume I

Volume II

Volume III

Volume IV

- Theory

- Program Users' Guide

- Demonstration Problems

- Program Listing
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ABSTRACT

A theoretical development and associated digital computer program

system for the dynamic simulation and stability analysis of pas-

sive and actively controlled spacecraft is presented. The dynamic

system (spacecraft) is modeled as an assembly of rigid and/or

flexible bodies not necessarily in a topological tree configura-

tion. _e computer program system may be used to investigate

total system dynamic characteristics including interaction effects

between rigid and/or flexible bodies, control systems, and a

wide range of environmental loadlngs. Additionally, the program

system may be used for design of attitude control systems and for

evaluation of total dynamic system performance including time do-

main response and frequency domain stability analyses.

Volume I presents the theoretical developments including a des-

cription of the physical system, the equations of dynamic equi-

librium, discussion of kinematics and system topology, a complete

treatment of momentum wheel coupling, and a discussion of gravity

gradient and environmental effects.

The development of synthesis and analysis techniques for the

linearized system includes a discussion of she numerical linear-

ization technique, procedures for definition of system transfer

functions, and linear time domain response.

Volume II is a program users' guide and includes a description of

the overall digital program code, individual subroutines and a

description of required program input and generated program out-

put.

Volume III presents the results of selected demonstration prob-

lems that illustrate all program system capabilities.

Volume IV contains a listing of the digital code.
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I .
PROGRAM SYSTEM OVERVIEW

This volume is intended to provide the reader with sufficient

understanding of program system DISCO$_and its capabilities so

as to permit a user to employ the program as a basic tool to

analyze the behavior of s wide range of dynamical problems.

Specific emphasis will be on a simulation for multiply-inter-

connected spinning elastic bodies responding under the combined

influences of external environments and either active or pas-

sive control.

A, INTRODUCTION

The simulation employs a state-space approach that was developed

in detail in Volume I.o The state-space formulation provides an

attractive basis for simulation of nonlinear dynamical problems

in a general sense as well as permitting linearization of the

governing equations to provide an additional foundation with

which to evaluate frequency domain and linearized time domain

charscteristics.

An attempt has been made to relieve the user from the require-

ment of having to communicate with the digital program via large

amounts of bulk data input. Although the program has many op-

tions available, the program data stream has been organized to

require only a minimal amount of basic input data for a particu-
lar simulation. The data requirements have been further consol-

idated in a manner that is quite definitive for the physical

system being simulated, In summary, the user can quite easily

relate to the particular elements of the program requirements

and thus minimize setup time required to prepare data input

for a given pr6_lem, in addition, a set of self-checking fea-

tures has been included in an attemp_ to identify and check

certain compatabilities that are necessary for a proper simu-

lation of a physically realizable system.

In an overall sense, the digital program can be employed by the

user to obtain

i. nonlinear time response,

2. interaction constraint forces,

Dynamic !nteraction Simulation of Co___ntrolsand Structure
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3. total system resonance Properties ,
4. frequency domain response and stability information,
5. linearized time response.

The program outputs consist of printed and plotted results de-
picting

i. dynamic model construction,
2. time domain response,
3. frequency domain characteristics.

The printed outputs are of a fixed form while the user controls
the plotted information through the input data stream.

m. SIMULATION OVERVIEW AND NOMENCLATURE

This discussion identifies the basic nomenclature used to syn-

thesize s typical assembly of interconnected bodies. The

theoreticsi deveiopment, program users' manual, and demon-

strstion problems make extensive reference to various termin-

ologies that are clarified here. Figure I.B-1 provides a visual

display that i11ustrstes many of the items being discussed and

will be repeatedly referred to in the ensuing discussions.

The overall system "topology" is identified by the user via the

input integer array ITOPOL that contains the necessary informa-

tion describing which "hinges" interface which bodies. Each

body contains a body reference point that is the origin of an

orthogonal cartesian body axis system. This point need not

coincide with the body center of mass.

Contiguous "bodies" are interfaced through a "hinge". We say

interfaced in lieu of connected to emphasize t_e_act_that _he

common "hinge" point between contiguous bodies may actually

permit relative translational motion of the two bodies at the

hinge. The degree of fixity st the hinge is identified by the

user via the input integer array IHDATA. A typical body may

contain "sensor" points that identify particular points where

additional information is required to complete the desired

simulation. A sensor point might sense on position or rate

for the control system inputs, but could also represent a point

on a body where certain other information is desired, such as a

momentum wheel location or a point of force/torque application.

1-2
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The integer input array IFTSMW identifies the body, where a

particular sensor point is located.

A body may also contain "momentum wheels". This special con-

sideration accommodates a disk or rotating mass with a single

relative rotational degree of freedom into the simulation with-

out introducing another body. The momentum wheel capability is

more efficient for the simulation of a single degree of freedom

rotating mass than is constraining 5 of 6 rigid body degrees of

freedom via constraint equations. All momentum wheels must

have an associated sensor point. A wheel may either be active

or constant speed; an active wheel has a variable spin rate and

receives an input torque (generally via some sensor output re-

lationship) and a shaft torque is applied to the wheel inducing

a wheel angular acceleration. The array IM0 identifies whether

or not the wheel is active, and which axis is the spin axis.

The reference axis for the wheel is the same as the sensor

point axis system where the wheel is located. The array AM0

identifies the wheel spin rates (initial rate only for the ac-

tive wheel) and the wheel spin inertia about the spin axis.

The system state vector is arranged in a specific manner within

the program and it is necessary for the user to be very familiar

with this arrangement for a number of reasons. First, the user

must know where certain variables are located so that he can

couple the control law into the simulation, and secondly, the

user must know the order of the state variables in order to

interpret results. Figure I.B-I presents the state variable

order consistent with the illustrative problem and other re-

lated information. The state variables shown do indeed repre-

sent a typical arrangement in that all of the various types of

variables resulting "from the multiple options available within

the simulation are present. The order of the constraints (A)

is also noted. Note that the user introduces the control varia-

bles into the state vector but these variables (3) will always

appear after the betas (_). Furthermore, the user may also in-

troduce auxiliary variables (plant sensor signals and control

system outputs) for use in the linearized studies. These auxil-

iary variables should be placed (by the user) after the control

variables (3) and in the order: plant sensor signals (Xss)

followed by the control system outputs (B).
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C, GENERAL USAGE INFORMATION

There are a number of guidelines that must be adhered to in

setting up a particular simulation. Some were detailed pre-

viously and are concisely summarized here:

• there must be at least two bodies; a single body problem

is simulated by including a dummy body that is not con-

nected to the body to be analyzed;

2. body no. i is always positioned relative to the inertial

reference;

3. bodies are numbered from 1 to NB in an arbitrary order;

4. every body (except body I) must have at least one hinge;

body i must have at least two hinges;

. hinges are numbered from 1 to NH in an arbitrary order but

hinge no. I is, by definition, the hinge on body I between

body I and the inertial origin; hence, hinge no. i can only

appear on body i;

6. there must be at least one sensor point for a given simula-

tion;

7. sensor points are numbered from 1 to NS in an arbitrary

manner;

, a typical flexible body requires mass and modal data that

reflects a coordinate system that is consistent with the

body axis reference system for that body, e.g., a modal

Coupling approach establishing modal properties for a given

body would have to use the same reference body axis system;

, for frequency domain studies, there can only be as many con-

trol output variables identified to introduce into the state

equations as there are control system variables to begin

with. Similarly, there can be no more sensor signal varia-

bles identified than plant variables which appear in the

original independent state equations.

i0. the user must make certain that the user supplied package

has dimensions consistent with NHMAX for the arrays

I-6
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SK(NSK,NHMAX),DK(NDK,NHM_AX),and HNGT(NHT,NHMAX)

where NHMAX= dimensioned maximumnumberof hinges,

NSK= 3 or 6 depending upon nature of hinge free-
dom,

NDK= 3 or 6 depending upon nature of hinge free-
dom,

NHT= 3 or 6 depending upon nature of hinge free-
dom,

and if rotation only, then NSK= NDK= NHT= 3, if rotation
and translation, then NSK= NDK= NHT= 6;

ii. the inertial properties of all the momentumwheels in a
particular body must be included in that body's inertia
description (whether rigid or flexible) since inertial
coupling is used.
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II° PROGRAMSEGMENTATION

The digital code has been segmentedinto an executive overlay
which governs the succeeding program flow and four supporting
primary overlays, each with a separate and dedicated purpose.
The basic program flow is depicted in Figure II.A-I.

I
Io_Nsl0!

I
I

I MAIN I

I
' _ '

Figure fI.A-1. DISCOS Program Segmentation
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Table II.A-I summarizes the intended purpose of the fundamental
components in the program structure,

T_ble II.A-I DISCOSOverlay Description

Primary Ovcrla Is

ScgmentName

MAIN

DYNSI0

DYNS20

DYNS30

DYNS40

Purpose

Executive program control

Data input

Simulation of problem, lineari-
zation of state eq's, nonlinear
time response

Plot results from nonlinear or
linearized time response

Frequency domain analysis, linear-
ized time response, frequency domain
displays, (Bode, Nichols, Nyquist,
Root Locus)

SecondaryOverlays (called from DYNSI0)

MSMODL

MSMODC

Flexible body data inputs for
lumpedmassrepresentation

Flexible body data inputs for
consistent massrepresentation

The executive overlay (MAIN) initiates the simulation by read-
ing job identification information and then passes control to

the first primary overlay (DNYSIO) which represents the basic

data input segment. This overlay may be viewed as the program

segment which builds the model from the input data. A series

of topology checks are made as the data is loaded within this

overlay to better assure proper modeling of the physical system.

This overlay utilizes two additional secondary overlays for pro-

cessing certain types of inertial and modal data.
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After overlay DYNSI0has structured the basic data for simula-
tion, control is returned to the executive overlay which in
turn passes control on to the second overlay DYNS20. This
overlay performs the actual problem mechanization and develops
the nonlinear formulation which is the foundation for the en-
tire dynamic simulation program.

During a given simulation, the executive overlay always calls
both the first and second primary overlays (DYNSI0 and DYNS20)

but, depending upon certain input control parameters, may or

may not call the time history plot overlay DYNS30 or the lin-

earized system analysis overlay DYNS40.

Simulation of a particular problem has its basis within the

algorithms contained in the program subroutine YD_T which es-

tablishes the canonical first-order differential equations that

govern the dynamical motion. This routine in turn addresses

another subprogram T_RQUE which in turn activates the user

supplied modules that relate to the particular simulation being

considered. These modules are discussed in further detail in a

following section.
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III. DELINEATIONOFUSER-SUPPLIEDMODULES

The program has been written under the assumption that certain
user-supplied modules are available to complete a given problem.
In this manner, the user has considerable latitude with regard
to howcertain particulars related to a given simulation are to
be handled. Control law specification, external torque inputs, and
identification of plant sensor signals and control system out-
puts are examples of items handled by the user. With this con-
cept in mind, several subprogramshave been placed under user
control but with certain restrictions and guidelines to which
the user must adher. Later commentswill identify certain re-
quirements associated with these user supplied modules.

° LOGIC FLOW

It is worthwhile to consider a flow chart segment of the pro-

gram (Figure III.A-I) and its chronology within the solution

process. The order _._hich the user supplied modules are call_d

is indicated by the integers 1 through 7 (for subroutines) and

8 and 9 for functions.
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IN° _f

No
me

Yes

rk

°Ti

Linearize)system.

P_erform o_

User-Supklied Subroutines

-- i--_ C@NTRL 1

-- 2-_EXT_R I

3--4SHAFTT i

- 4--_rKHINGE I

- _-qGMISCI
6-_EQADD J

User-Supplied Functions

User-Supplied Subroutine

7 _ LT_RQL i

Figure III.A-I Chronology of Addressing User-Pak
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B. SPECIFICS RELATED TO USER-SUPPLIED MODULES

The separate user supplied subprograms each have specific in-

tended purposes and have been coded to fulfill these goals.

The user can extend the scope of any of these modules with his

own code, but there are certain items that these routines must

perform. In any case, the potential user should be very famil-

iar with many of the details of the user supplied package, and

it is with this fac_ in mind that s separate discussion will

now be devoted to c ¢ , of the user supplied modules. Reference

will be made to some of the programming logic contained in the

DISCOS subroutine T_RQUE, and so this logic has been put into

flow chart form as Figure III.B-I. Also, for reference pur-

poses, the seven user-pak subroutines and two subfunctions

(ADT, ADDT) are included in Appendix B corresponding to typical

situations.
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r_,_RQUE

__[
IcAL_c_T_LI

I
IcA_LExT_i

O

I Add external 1torques to {G}

I

I

Creates external torques/forces

Note; {G} is force/torque

vector _ RBS of equation

of motion

Adds momentum wheel shaft

torques to {G}

Adds hinge spring tQrques to IG}

and sums spring energy to

potential energy

Gets At due to thermal

environment

Add to {G}-

[_] {p}- [k] ({_}- {_o})

-- i

-[_] {_} + ½ L_J[m,_] {u

I
[CALL_QADD1

Now have RHS of equations

of motion

Creates additional equations

for similarity transformation

(used in linearization and

stability package)

Figure III. B-1 Subroutine T_RQUE Flow Diagram
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C@NTRL

This is the first of the user-supplied routines and is always

called by DYNS20. The primary purpose of C_NTRL is to esta-

blish the time derivatives of the control system variables.

These variables may be required by some of the other user rou-

tines that are activated after C_NTRL has been addressed. The

routine must also establish the number of plant sensor signals

(NXSS) and the number of control system outputs (NBTQ) which

are transmitted through common block (/LDSIZE/) to the remainder

of the program. For transfer function studies, the user is also

required to identify whether or not transfer function poly-
nominals are to be utilized. This is accomplished in a data

statement (in C_NTRL) with the variable NPLY which is the num-

ber of polynominal ratio pairs (numerator and denominator) to

be utilized. The first call to C_NTRL will read in the poly-

nominal coefficients (for NPLY # 0).

Subroutine CONTRL contains a good deal of information pertain-

ing to the simulation by virtue of its common blocks. Section
C identifies the constiuents of the common blocks contained in

this and other modules. Additional common blocks can be esta-

blished by the program user to transfer information between the

separate user-pak modules.

EXT_R

This subroutine establishes the system external torques.

Typically, this module can be utilized to accommodate such

items as RCS (Reaction Control System) forces and torques,

aerodynamics, and/or solar wind. The user can also extend

this routine to include the addition of other state dependent

torques. In summary, EXT@R, can be used as a "catch all" for

inclusion of any additional forces and torques acting on the

system. A single call to EXT_R from subroutine T@RQUE esta-

blishes an integer array (ISNP) whose elements identify which

sensor points are to be used for force/torque inputs. A vector

containing torque and force components (ordered: Tx, Ty, Tz,

Fx, Fy, Fz) is then established for each of the force/torque
sensor points and placed as a column into the array TEX. The

vector uf discrete forces und torques (referred to the local

sensor-axis system) is returned to subroutine T_RQUE from

EXT_R. These forces and torques are then Lransformcd and added

to the total system ext_,rnal force/torque array {G} The user

can bypass EXT_R t'clated calculations by setting the variable

NTEX equal to zero.
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SHAFTT

This routine establishes the shaft torque for each of the non-

constant speed momentum wheels. Zeros are inserted for the

torque contributions to the external torque vector for a con-

stant speed wheel.

KHINGE

This routine sets up hinge spring and dsshpot torques/forces.

It also accounts for potential energy contrlbutions due to hinge

spring deflections. The user must identify where spring rates

and dsshpot constants are to be found. This can easily be

handled by a user specified equivalence statement within sub-

routine KHINGE to locate the leading stiffness and damping

elements within the data block identified as CNTDTA. Note:

within subroutine KHINGE (see subroutine listing, Appen--_ B)

there are statements of the following form

DIMENSION SK(3, NI_iAX), DK(3, NHMAX), HNGT(3, N_IAX)

DO i0 1=1,3

DO 15 1=1,3

DO 20 1=1,3

where the integer 3 reflects the fact that consideration has

been restricted to admitting only rotational springs at each

hinge. If the user wants to also include springs/dashpots in

relative translation at the hinge points, the three (3) in the

statements above must be changed to a six (6), and appropriate

spring rates and/or dashpots included within the data input

array CNTDTA. Further, the equivalence statement locating the

first spring rate (SK(1)) and dashpot constant (DK(1)) reflect

an order that is consistent with the hinge order; that is the

first three elements in CNTDTA starting with the location cor-

responding to the leading element of SK represents in order K_I,

K_2 , Ke3 for the first hinge. A similar relationship exists

III-6
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for the array DK.

Example: In KHINGE note that

EQUIVALENCE (CNTDTA (K) ,SK(1)), (CNTDTA (L) ,DK(1))

and the array CNTDTA would by

CNTDTA = . _Kel K_2 K83

element(K) Hinge 1

(springs)

element(L)._. C81C_ 2 C83

Hinge i

(dashpots)

• K81 K82 K83

Hinge h_

(springs)

C81 C82 C_ 3

Hinge NH

(dashpots)

Of is consistent with the Euler rotation
where the order _i_2,3 ,,q,,type (1-12) for the nlnge triad.

The remainder of KHINGE is concerned with the proper placement

of the spring/dashpot forces and torques onto the composite NB

bodies (generalization of forces and torques) and should remain

unchanged.

The user can modify the referenced torques and forces immediate-

ly after the (D_ 10 L=I,NH) loop if he desires, but care must
be taken to assure that the proper force or torque is correctly

applied to accomplish the desired result. Several of the de-

monstration problems (refer to Volume III) employ this process

to apply control system outputs.

GMISC

This routine is reserved to implement torque/force contributions

from thermal gradient effects_ The entire state vector, along

with component position and attitude information, is available

via transfer through labeled common arrays• Section C provides

more insight into the information contained in these common

blocks.

This routine establishes additional equations for use in the

linearized time domain analyses. It must identify the number

III-7
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of additional equations introduced via the variable NAUX (num-

ber of auxiliary equations). These equations relate plant

sensor signals, X_s and control system output forces/torques,

B i, to the system state and in the specified order. The addi-

tional variables must be placed in the state vector as the last

NAUX state variables and in the order, X_s , then B i and they

become an integral part of system transfer function evaluations.

This routine establishes the bik Uk portion of the right hand

side of

_i = AijzJ + blkUk

which is used for the linearized time response. This corres-

ponds to the external excitations for the transformed variables,

zi, leading to evaluation of the perturbation response.

, ADT (Subfunction)

This function is used in conjunction with ADDT to implement

prescribed kinematical motion in the hinge coordinates. With

rcference to Figure I.B-I, the array IHDATA(I,J),I> I, may have

2 as an entry indicating that the Jt__hhinge has velocity and

acceleration prescribed in that coordinate. The argument of

this subfunction is: ADT(IC,T), with IC=6*(J-I)+(I-I) corres-

ponding to IHDATA(I,J)=2. The integer IC and the time T are

passed into ADT via argument by the calling subroutine so that

the velocity (_) may be established for the proper hinge coor-

dinate as a function of time.

For a given rheonomic constraint, we note that both _ and

must be set by subfunction. Now, it is conceivable that the
user knows _ as the exact mathematical time derivative of _.

It would seem that the natural thing to do would be to create

ADT and ADDT subfunctions to return consistent _ and _ respec-

tively. This is not the best thing to do, however, because of

numerical integration characteristics. The numerical integra-

tion of {0_ reflects the use of _. The resulting {U} reflects

a numerically integrated _ which cannot be consistent with a

value obtained any way other than numerical integration. The

consequences of this are seen as slight errors in motion res-

ponse, but also, there is a large spurious change in system

momenta.
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The best way to effect rheonomic constraints is to use values

of a obtained from numerically integrating $. This can be

easily done by using additional differential equations that
are accommodated in the state vector as additional "control

variables" or {8}. Thus, after all of the actual control varia-

ble rates are established (in subroutine C@NTRL). one need only

code additional expressions to set _(additional) = h'(desired).

The statements within subfunction ADT merely return ADT=Y(K);

the state vector Y is available in labeled common /VECTOR/, and

K corresponds to the location in Y where the 8 = a control var-

iable resides. Of course, IC must be tested such that the

appropriate _ = 8 is returned.

ADDT (Subfunction_

This function is discussed with regard to its relationship to

ADT in Section (8) above. This function has arguments:

ADDT(IC,T), exactly the same as ADT, and returns values of _'

for appropriate IC and T consistent with the _ returned by ADT.

Note in Figure lll.A-l,the chronology is such that subroutine

C@NTRL is addressed prior to function ADDT. This is so that

C@NTRL can establish a value of _(additional) = W (desired)

to put i'n the state vector time derivative (YDT, also available

in labeled common/VECTOR/). Now, for the appropriate time T _

and IC, it is only necessary to set ADDT=YDT(K), where again K

corresponds to the location in Y where the _ = & auxiliary con-

trol variable resides.

Ct DISCUSSION OF SELECTED COMMON BLOCK INFORMATION

The program user will very often have a need to access certain

information that is calculated and stored within the program in

order to compute specific variables required for the user sup-

plied modules. Such information about the simulation is stored

in multi-dimensional array form within labeled common blocks.

These data provide a good supplement to the state variable con-

tent which has been previously discussed in that the user can

extract both total and relative positions and rates for any

component of the simulated dynamical system once he has a firm

understanding of where certain data reside within the program.

The following subsections will discuss selected common block

arrays to better familiarize the potential user with their con-

tent.
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i. Common block/BHBSRD/ contains three separate groups of in-

formation which the user may need to access. This information

is concisely summarized in double and/or triple subscripted

arrays as

BS (6,6+NMDBOD, NSPMAX)

ROL (3,3, NBMAX)

D0L (3, NBMAX)

where the following items are noted -

NMDBOD = maximum dimensioned number of modes per body,

NBMAX = maximum dimensioned number of bodies,

NSPMAX = maximum dimensioned number of sensor points.

The array, BS(i,j,k), contains the kinematical coefficients for

all of the "sensor" points. The rows (subscript i=1,2...6) of

the array refer to (in order: rex, my, mz, u, v, w) the com-

ponents of absolute angular and translational velocity (sensor

referenced) at sensor point k. The columns of the array (sub-

script j) refer to the j=1,2,...6 + no. of elastic modes on

body containing sensor point k. Thus, in general, if we want

to know the projection (the it__hhvelocity component) onto the

triad located at sensor point k, the following expression is

noted

Vel = BS(i,j ,...,JL,k)i 1
_J

The array, ROL(i,j,k) contains the rotation transformations

relating the body axis systems to the inertial reference. The

elements of the array are the direction cosines between the

^ e o. Subscriptbody axes, ek, and the fixed inertial system, ^

k denotes the body number.

The array DOL(i,k) contains the three vector components, (X,

Y, Z), from the inertial reference to the body axis system, @k,

for each body.

2. Common bloc)( /SPECIF/ contains information which the user

max. require. These arrays ere
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BETAH(6,NHMAX)
.BETAHD(6, NHMAX)

RS(3,3,2* (NSPMAX))

DS(3,2* (NSPMAX))

where the following items are noted -

NH_X = maximumdimensioned numberof hinges,

NSPMAX= maximumdimensioned numberof sensor points.

The arrays BETAH(i,j) and BETAHD(i,j) contain the hinge BETA's
and rates respectively (for hinge j). The order (i subscript)
is given as

m

_2

_3

_3

where 8i is the itl___lEuler angle rate consistent with ITYPE for

hinge j and _i is the ith velocity component of point q relative

to point p in the p frame for hinge j.

The array RS(i,j,k) contains the rotation transformations

(direction cosines) between the sensor point axis system and

the body axis system (body on which sensor is located). Two

sets of transformations are identified for a given sensor

point. The first represents misalignment of the two triads
without elastic deformation and the second includes the elastic

deformation. The ordering (subscript k) proceeds as follows:

the _th sensor rotation (without elastic deformation) is located

at k = 2,_-I. The total rotation transformation for the _th

sensor is located at k = 2,_. For a rigid body, these two

transformations are identical.
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The array DS(i,k) contains the three componentsof the vector
from the body axis system to the body sensor points (in the
body axis system). }_re again, there are two sets of vectors
(rigid body and rigid body + elastic) for each sensor point.
The first is for rigid body and the second includes the elastic
deformation. The addressing algorithm is the sameas for
RS(i,j ,k).
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IV. PROGRAMINPUTS

The dynamic simulation program utilizes somebasic data input
subroutines in an attempt to standardize s large amount of the
bulk data input. Additional formatted inputs have been used
where it is more meaningful (and more efficient) to do so. As
will be noted in the following section, there is a large amount
of data input via subroutines READand READIM. Therefore, it
is useful to familiarize the reader with these two routines
prior to describing overall program data input requirements.

A, DISCUSSION OF SUBROUTINES READ AND READIM

These two subprograms are structured to read matrix arrays in

floating point (real) notation (subroutine READ) or fixed point

(integer) notation (subroutine READIM). A thorough discussion

of the routines and their supporting subroutines is contained

in Appendix A. The following discussion gives a cursory over-

view of their usage.

The routines arc activated by a FORTRAN call of the form:

CALL READ (A, NR, NC, KR, KC) or

CALL READIM (IA, NR, NC, KR, KC)

where the arguments in the call statement are

A, (IA) = floating (fixed) matrix array of size NR by NC

NR = number of rows in array

NC = number of columns in array

KR _ row dimension of array in calling program

KC = column dimension of array in calling program

A call to either of these input routines requires that the data

be in the following format:
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.

Subroutine READ

First card - matrix name, NR, NC with format (A6,14,15)

Middle cards data with format (215, 4D17.8)

first 15 is row number

second 15 is column number of leading D17.8 field

next 4D17.8 are elements of the array

Last card- ten zeros in columns i through i0

Subroutine READIM

First card - matrix name, NR, NC with format (A6,14,15)

Middle cards - data with format (215, 1415)

first 15 is row number

second 15 is column number of leading 15 field

next 1415 are elements of the array

Last card - ten zeros in columns I through i0

Bt INPUT DATA STREAM

This section presents the program system input data stream

together with the data input control logic. The approach taken
herein is to first introduce an overview of the data inputs and

program control logic in the form of a flow diagram (Figure

IV.B-l) and. to then identify the details in much the same way

as the FORTRAN code accepts the data inputs. This method of

presentation has been chosen as it most closely relates to the

actual processing of. the user inputs for a given simulation.

In addition, the user can follow the program control or switch-

ing logic to determine just what data are required to complete

a particular simulation.
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Figure IV. B-1

Program System DISCOS Data Stream Flow (Sheet 1 of 9)
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l
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I
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l
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i
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l
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I

I NHB = No. of Hinges, Body NNSB -- No. of Sensor Points, Body N

l
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i

I Read V I [Inertias (READ)]

I

I
l_oa__0_._ IE_n_e_um_°_,_u_ _o_on

Type (1615)]

J
I Read V I [Euler Angles (8DI0.3)]

i
I Read DH I [Hinge Point Geometry (8DI0.3)]
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4

NO

l[Sensor Number, Euler Rotation

[Read NOS,] ITYPE 'Type (1615)] ]

I Read V I [Ruler Angles (8DI0.3)]

l l
I Read DS ][Sensor Point Geometry (8DI0.3)]

I I

I-

Fijure IV. H-I

Projr_ Sastem DISCO¢ _ Data Stream Flow (S_neet 4 of 9)
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V(3) : J7 _ {_OCY OEPE_ENCE- _ IN'_TI_ _ - _0 _v T_TAO)

V(_l : JX_ (TNFOT_?SS _CUT _EF I=CI_l_ I_0T oO_Y CGI

V{_.) = jX'_

V( r-) = JY7

C

C
f.

C

C

r,

4"

C

C
t_

C

C

C

C

N_q : NU_'_E_ CF _TNGES CN =.ODY N - =_P.LUSIVE CF HINGE I, oCIlv !

C ......... CEAn.{NIT,FCPMAT = __15) NOF, ITYPE

C

C NCH = HIt_GE NU_E_
r IT_CE : EULEI_ I_OTATION _YPE TO ORIENT FI_GF

C _=I_I] WmX _OrIY TRI80
f_
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C
C

C
C
C

C'

_ _U_I_CUIINE M__MOOL - T_;CUT FOP r:LEXTPL_ Fcrjy_ LUMPED _,el_j$ MATo'j' x
C"

C

C ......... C_LL READ (A, NJ_ 1, KJC_hT, KuCC:I
C
C
C

C F_R I_= _TH JC_kT -
C

e(_,lt = JOTkX Me_T

C
C
C
C
r,
r,
C
1",

C
f,

C
C
C

C
(;

MATaIX SIZE kJ ny _ WHEO_ NJ = NUW_.ER Oc JCTNI"_
C_ ECP.Y N

MaTriX SIZE I_J BY E

FCD T_E ITH JCThT -

A(I,It = JO_KT INE_TTA_ JWX

A(T_) = JOIBT IkE_TIA, JYY
AI_,3t = J0tkT INF_TI_, JT_

A(T,_I = JOI_T IKERTTA, JWY

AII_51 = JOIhT INE_I"IA, JX_
_(I_6) = JnI_T INERTIA, JYZ

Om B w_=1,2

q ......... C_Lt _EAD f_ NJ_ 3_ KJOT_T, KwODE)
C
r.
C
4,a

r

r.
C

C
c
r
C
C

r.
P

v=_

MATRIW _I?E kJ qV

FC_ THE ITH J_.INI -

NOTE -- J -/xy dm, ect.xy
Vol

5 CCNTT_UE

A(T,I! = J_T_T KIAT?C M_R -PWENT, _X

A(]_2t = JCIkT SIATIC MAS_ MCWEKT_ Cv

_(I_| = JCTNT _T_TIC M_ MCHENT t _2

_(I,ll - X (oor)Y REF _CINT TC JC.TI_T, qC_Y T_'TAD}

A(I_I : Y (Bhr)V P.EF oOIN_ TO JP, TNT, Qnr,v TcTAr_}
e(l,?) -- Z (BP.r'v m_F PCT_T TC JOlh_, Bt.,'Y TRIen)
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C
r.

C
C
I"
C
C

DO 10 K=lt6

r
C ......... CALL eCA_' (_9 NJI NE, KJOINT_ KMCOE)

r,

C

C

C
C FOR THE ITH JOINT -

r
r K-i A(I,J! = X nISOLACEWENT AT JCI_I, wf.r.E J

C K:2 A(I_J) : y nISmtAC_._ENT AT JOI_T, MOrE J

r K=3 A{I,J) = Z DISPLACFMENT at JO!KT_ _cr.r J

C K=W A(I_J) = THETA Y POTATI£_ AT JCI_T_ "CO =. J

e, v=_ A(I,J) = THETA Y _OT_TICN AT Jr)lET, P'OOE J

K=_- A(I_J) = TFETA 7 _O._ATICK At' JrT_T_ MOCE J

C 1,_ CONTINUE

C
R

f-

C
C ......... £AL.L _Ar'] (A9 NE_, NEt v.j.,')'rl_Ts kCMCP,.--.)
C
C M_TRIW SIZE _E BY _E

r K=_ A -- MOOAL STIFFNESS

q

C K=Z A = WCCAL CAMPIN r"

C

C 2Q CONTT_UE

C

r,
C ......... OEADIKITIFORMAT "- 8DIC._) (AIJI_J=I_NE)

C

C v_'rTCR OP INITIAL MEDAL DEFLECTION CCC_OINAT_-S

C
......... R_A._(NIT,FC_MAT = BOiO,3) (A(J) _Jr=-t_E)

C
C VFCTC_ OF INITIAL MOI1AL VF.LOCITY P.CORT)INATES
C
C
C

-ATO_.X STT.=_ hJ BY KE WHEaE No_ = _UM_ER OF aLAS'TIC
MrrE$ _ETAINED FOP non_ N
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NCT_ -- FCLLOkZNG EULE_ A_,LES VEATUREC
IN U_O__FOOWEO CONK_GURATIO_

_lHn = NUV.nER CF HINGES CN qODY N - EXCLUSIVE Ct_ NtNr,£ It n0OY I

Oq 15_ t=l_hHe

; ......... rEan(EZTtFCg_JT = 31_) k_ke ]TYPEe JCTkT

HOW = NING-" _'tIH__EP --
ITYFF = EULEn ROTATICN TYPE TO ORIENT HINGE

TQIAC WRT n0OY T_IAO
JCT_T = JCTNT HUMrIED r,(_ESeC_EIEG TC PTKC,_ PCTNT

: ......... PEAO(NITtrCRP_T = 3_10,3) (WVIJ),J=tt3t

: £ULER AH_L',_ T(_ C_TENT HTWC_.r_T_AD - PEq_ItTATTCN
O_CEE rEFINeD eY TlYc_E

wV(1) : T_TA 1 (FIRST _OTATTO_)
t4V(2| : TH_TJ 2 (SECNO _C1_TICI_)

150 CCNTI_UF

t,,,qm : NUHBER OF TENSOR Pej]rl_Tq ON .c-COY N

nr_ 1El L:I_N5 _

......... PEAO|N]TtFCR_AT = t1_) kO_ _TVPEe JCTkT

NC$ : $[N$0 _ POZNT NUq_E=
ZTVPE : EULE; ROTATIC_ TYre TO CRIENT 5FNSCR POINT

T_._aC _4_T PCOY T_I_O
JCZNT : JOINT NU_E_ CO¢_ESPCEOTNG TC _Et_$CR P_NT
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C
C
C
C
C
C......... P-_'AOfNITtFC_MAT : ]C10,3! (WVIJ)_J=I_3)
f-
C
C
P,
C
C
C
C
C
C
C
C

EULF._ ANGL__S TO COIENT SE_SCQ POZkT T_TAD - P_wUTATTO
O¢CER DEr:INED qY TTY_E

wV(1) : TMETe 1 (FI;S'T oOTATIOI_)
WV(2) : TPETJ 2 {._F.CNfl ROTATIOn)
WV(]) == TMETa _ (Tried eOTaTIO_)

160 CCNTINUE
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r,
t"

m

c

c
c

c
f,

P

c

f-

f-

L_

r,
¢,.

r, ......... CaLL q_.aP, Tw (JV, t, NWCDT, 1, _A_)
P

C VECTO_ SITF I RY HwCOI = _U_F_c CF _iC-_O _qY _OqF_ *

JVtJ} = Tkq

TNC r,_ 3

TNP. Tn, 0

INC t T 0

WNEOE TNO IS CCtlluk k't', WHTCH .r,#t(J) OF ¢#TG

MOPaL _.TmI_ WTtL A:)mEAP TN

rpVISE r) HOOE MATRIY

P.EPLA£_ £CLUMN

Oct'TE r_Ct U_k

RE°LA#E CC.LUMN, C_kr,,E _;Tr.N_

r ......... tALl ocAr lh, N_, hr,A_ K_mw KA_)
e,

.q

r.
P

f-

r,
r"

q
r-

r.

r

r"

r.
f-

f_

C
r

t-

C
f-t

C

q

C

r

C
t"

F"

oCW-C, CLU_K C0n¢OIN_TE CROEq _U__T B-" CC_ST_r.-'__T

wTTH IP.:. CEGC-ZE rr PqFEOOH TA=LE, JnOr

TF (InIAK ,Ft., ] ._NFI. IOIAP .Eq, .') GO TC !t

OW2(J) = ._P,UAPE OF jrH NATUrAl FP__OUE_Cy ftr_.oE._ork, miNc
TC JTF Ih¢IJf _cr)c S_AP_

[% rCNTTNU£

O_IGI_AL PAGI_ ]B IV-33



c

C

C

c

C

C

C

C

.e,
C
C
C
C

O_O_PIk_ kATPIX -- _EE _OTE qELr.W

Gr 7_ _1

6_ CCNTIhU_

C

C
C ......... rEADtNIT,FC_AT = _C10.3) (OM2(J)_J=I, NE)

C

P.

P.

C

C
C
C
C

V__CTOQ S!7._ I oY N =- = NUM°E Q OF Ft ASTIP. MOD__S

RETAIKED VIA INPUT JV _ELECTTOF VECTOg

_2(J} : MOOAL nAHPIN_ RATIO FC o JTH ELASTIC _C_F

61CONTT_U£

IV-34

OW2(11 : X r,CMPC_E_T _F VEr, T_ o TFA7 LCP.ATES JTYPCL P_

flY2(2) = Y CCwPCNF _T OF VECTO c THATLCPATE¢ JTYDCL mT

0"2('_1 : 7 CC'_PP, I_Ft_T 0 _ VF._TO ° THST LCCATE_ JTYDf'L PT

r ......... EEAO(KIT)FC_AT = I¢.) JTY_CL

C
C JTYPC.L = PE_z_E_P. -" JOI_T hUM_,EQ WHOSE G_O_FTOIC

C rC._ITTC_ CCOoCI_'ATES will _._ UcE _ in

ESTAOLI_H _IF,'fr_ _O_Y MP,OAL ,AT_TW

C
C ......... CEAD(NIT_FCPKAT = 301C._1 (_.M_.tJ}_J=i_])

C

C

C
C

C V£C,TO_ CP,uOOkE,|TS _-'_FE:ED 70 oO.OY T_IAC

C
C 5 r'C_NTI I',UE
,p

r.,
C IF (IOTA_ .£C. I) .r,CTO FC

C
C ......... C_LL °EA_ (A, NRA, _CA_ KAq_ _AP)

C STTF_F'SR _AT_IX -- RE_ NCT_ BELOW

P

C _(_ CqNTThUE
C
C _F flD_AD ,EO, 1) GC TC 6C

C ......... CALL _EAO (A_ NRA_ hCA, K_,, KAY)
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c

C

C
C

C
C
C
C

C

NrTE -- q=OLLCWT_NG EULE_ A_'GLES "Ea<;U:Em_
!N Uh_EFOPmED CONFIGUP_TION

NHq = KU_O"-_ CF HIMGES CN o_.DY N - F.YCLUSTVE CF UTNC, F 1, m_OV

m0 11C t=I,NH£

C
C ......... FEAD(hIT,FCFPAT : I]5) NOH, TTVPE, JOINT

C
P

C

C

C

C
C ......... OEAmIKIT,FCOMaT : 3010,?) (OM?(J)_J:I_3)

EULE_ ANGtES TO ePIENT HINGE T:IAO - CEmM{ITATIeN

0¢£E_ _E_INEC BY IIYPE

110 rCNTINU r

NCH : HINGE NUMmE m

IIYPE : E _ E_ R0_AIION TY_E TO 0PIF_T HTNG_
TRIAD WRT _e_Y TRIAO

JCTNT : JPINI NUMBER CORRE_OCN_I_G Tm _TRGE OOTNI

m_2(11 = T_-'__A 1 (¢I:ST RCTATICN}

0_2(2) = IHEIA 2 (_ECFO RCTATT_m_}

Ow.2l?) = IHEI_ 3 (THIR n, RCTATIqN)

he8 : NUMF. EP CF :;NSOR _f)INTS 0N RC_.Y N

TF (N_m ,Eft, 1_) PETUmN

C

,I,

C
C
C
f_

C
C
C
C

C
C
C

De t_C L=t,KS _

C
C ......... cEAr_IkIT,FCRPAT : 315) NOSt ITYPE_ JCTNT

NC9 - ¢.ENSO; p(_Ih'r NUM_E _

ITYPE : EULE; RCTATION TYF_ TO OPlEKT _EN._C_ POINT

TQIA[_ WRT _0DY TRIAD

JCIKI = JCINT h'UV._E_ CORPESmC_DI_G TC .¢._cK.¢C_POI_'T

e,

P.
C
(-
C
C
C
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r,

C

C

C

r_

r, SUPRCUIINE DYN,_)O - TNFUT FOP TIME HI_TC_Y pL_,T OUTPUT

C_

C

C
C ......... PEADINIT_FCRMAT = IGA8) (ICTITI(1),I=I,ICi

P.

C BJ CHSCAC, I__m MAST_q PLOT TITLE wItL _¢FEA_

C O_ ALL _AMES

C

e,

C ......... eEAnI_IT,FCRM_T = IS) NSET
f_

C

C
C

C

C

C

C.

C n_ 1GSD ISET=I,Ng-_'T
e_

C
C ......... FPaO(kIT,FC_f:AT = 15) JCL

C
.C

C
P,

C
C

r.
C
C
C

C
C
C

C
C

C
C
C

C
C
r.

NSET : N(, OF mLCT SET.c, TC nc

P,YCLEO T_P_UGh. EaCH _T
I, _ LIM_TffP TO 16 _EP_cA_E
VARZAgLES TO _.._CLErTE._

F_CM TWE ,_ET _ VA_IaeLES

WGITT_N PE _HJm=Otl'l'IN_ et_'W_

O_ L PL TWI:.

3Pt = t_O, OF VArIAbLES T_ nE

,¢_LECTZC FPCW THE KC¢I.CT

VA_IAnLES ¢_cV_CU,_LY WPITI_N
CN NTAPE3 POR CLrTTT._G.

(NC_'LIK_AP ANALYST ¢)

kC;t OT = C+2"NFC
(LINEA_ A_ALYSIS)

WHERE ....

NFQ = NC. Cr EOUATICNS

T_TEGPATEP.

NLA_ : N_,. ('r L_uqOA VA_IA_LER

kU = NO. Cr U VA_TAaLE, ¢.

_,_ = NO. C_ _OCIES.
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c.

C
C
C
C
r,

C

C
C

C

C
C

C

C

C

C

r,

C
C

C

C

C
r

C
r,

C

C

e,

r,

C

C

C

C

C

C

C

C

NCTE ---

NEC : • I_c_Ftx(J) + NU + hFETB ÷ NDFtTa

J= %

NU

t,'F BCFWr

: • Im.G_LXIJ) _ • I_C(_) ÷ 6•N m

j: _ K:i

M?ETA : __LI_ _" NU_ p,_, t'r ZE_C_ + ._UM r_
!_UMB.F_ROF TWOS I_ PCWS 2 THOU 7

C_ ARPAY I_DATA

: _tl_" OF NUWaE° _F CKES * SUm r)F

_ttw_E_ nF TWOS I_ _CW._ 2 THo,U ._

0_" ARRAY IHOaT_
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L_

C
q

C
P,
P.
C
C
C
P,
C
C
C
C
C
C
C
C
C
q
C
C
P.
P.

r.
r,
C
C
C
C
C
P.
C
C
C
C
C
C
C
P

C
C
P.
P

C
P,

C
r,

C
q
P,

_C*JL I_EA_
AkALY.¢.I S'

OR_'P. C_ VA_IAOLES ANO
*RIZE rC o A STNGLE _EP, O_n
(FC D, A $Ikr, tE TIqE, 'r).

VA_TAr_L.¢ ID, _T7P.

TIME I

YOOT NF_

Y _EC

U kU

HW) HY) H?)
P'X) PY) P7 6_N m

TCTAL _ kC,UL _ o,
WC_ENTUP VEP,TO c
.CCMPC_F I,,:T._ (W)YtZ),

T£TAL LIF,_AI::
MC_ENTUI " VEC 1"('I='
CCHCOkK_,TS {'X) Y) "_),

qCDY v_'kETTC.
-__,ERC,IE S,

_COY FO'_ENT T aL
E_EC)GI_.

TCTAL J_I_C-ULA_ PP-_',t
TCTAL L INEAC2 MT'wI,,
TCTAL K,E,)
TCTAL o,E, 1,
TCTAL E_EOGY

_n

R_

TI_E

Y
NEr_
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C
C
C

C

C
C ......... mEA_(_;IT, cC¢_'_T = 1EI5) {JVPL (J) _J=l,JCl)
f,,,

C
C
C
C
C
r.
C 20 CCNTIEUE

C

r.

C

C
C

r,

c

c

r.
c

c
c

c

c

c

c

c

c

r,

c

c
c

c

r.

c

c

c

c

c

JVpt(Jt = T_'VEGE c _EK'OTI_,E- GtC_.At
LC_.ATICN C_" JT, SELECTFq

VAPTAeLE FROM THE NemLOT

tr._G J_RAv.

NCI = ELEMENT ICCATIO_ (lCCAt W_T

JV_L APR_v} _C ¢_ THF lhr._.CE_-

D_NT PtOT VARIA=LE.

NCC = ELEMENT LCCATICN (LCCAt W=T

JV_L _PoAY) CCR UP TO _
mE_ENOENT VAo!A_LES TC PLOT

_!FUL_ANECU_tV VE_E_ THE

_CI DEPEM_ENT VA_TA=LE,

NGQI_ : _C. O_ FLCT FRAME_ IC USF

cCQ PLCVTIN_ THF KCT-KCn

G_OHP, IE, THE KC. cF F_AWE_
TO USE S!OE °Y STDE _O

_WPAUST THE _ANGE C_ TWF
INOE_NCENT V_RIA°LE.

It: t_O_I .EC, _) GO TO, I00C

THIS I{ _UE TC o_OCEOE TO NEXT SET

THIS _$_EN £N3EO LCO_ PE_IT_ MANY SEIEC._TtN_ OF TNE

JVPt DATA VARIAeLZK WIT" R_GARD TO IN_F_ENrjENT SNn

_EPEkr)E_,'T VA_IA_LES IN OeOE¢ TO FCRM CRCSq-PLOTS.
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C
C
C
C
C
C
C
C
C
C
P,
C

C
C
P.
¢
C
P,

C

C

C
C

......... READ(NIT,FCR_T
I

GO TO 2C

I_00 C_.NT INUE

rF TUR k
__1,JO

= AS_2XtAe_X,6AP.) TITLZ_ TITLD,
(CT ITL (I) ,I= t,6)

ALI:I-II_NUMERIC TITLII_G INFORMATICk

TO INCLU_,E ON PLOTT.Cr K'UTPUT,

IITLI = TN_EPC_NOENT VA_IAqLE TITLE,

TI1tO - r)EPENCENT VA_'I_OLE TITLT,

PTITt = CVE°ALL IITL __ rc_ P_oTICULA_
IOE_vIFIP.ATICR CF T_IS _.AMEo
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3

lit ti II it lit lit ill ill li ii ti lit lit ill Ill ill ill Ill Ill lit Ill ill It It tl ttllt ill lit ill lit IIIr lilit It It ltlll ill tl ti i' tt till ill ill ltl Ill' ti tit IItt tl S "i"i tliil tl It tt lit lit IItt II {,,,,t

D._AIT_I _i_k$ J3ZI_3_II _0# £D_NI - O_SNIO }_l/(lOao_ ,3
,0

3

3
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f"

C

C

r,

C

C

C
P

r

r,

C

c

r,

c

c

r,

C

C

C
r

C

C

r,
r
P

C

C

C

C

r,
r,

C

C

r,
C

C

C

C

r,
T"

C
r,

H

C

C
P

.r.
r

C

C
C

C

t_{ 2_J) = ItFIN --- TRAKS_--p F_N_TIC_ TN_IIT

VAPIABLE IOEkTIFTr. ATTON.

THI_ TNT'GEP IS _ LOrAL

TDE_IIFICATIC_ T_ T-'_Gco,

P_.FE_EhC I_G (_Ec ENO !K'C,

S_N_OR S!GhAL Cn

_CNT_qLL_ ° CL'T_U1 _IAntE
WHIC_ I_ THE V(Tk) _r

V(OUT!

V tT_')
= T r-

L_V(],J) = JTFOUT --° TR_kSFE_ FU_PTICk PUTOUT

VARTA_.LE ID.E_TI_ ICA_TO_'.

TwIS I_TEGEB I¢ 4 LOCAL
I_EkTIFIC_TTOk _TEC-E_ _
°_._E_ENC! NG (_Ec _N_,T_G

UrCk ITYmr) ETTHE o
S'Et,_C_ _'[GkAL Cc A
_,CkT_OLLE r_ _UTPIJT V_'_[I:
W_I_., IS T_r V(OUT) P_

T_F EXPOE_STCK ..

V {OU • )

VfIN)
: Tr

LRVt q,J) : RotOT

KPLhT : 3 NO rLOTS

_CPLOT : 1 PLOTS WILL r_--" uA_r

tRY( _-,J) - IAFt_

THIS IhTEG_V CC_'TPOL P_RAM_TE_
rERMIT_ THE U_R T r. SELECT

THE C_cACTE_I_TI_ _,C_T_ FCc_ A
GIVER TI_ANSFE_P FUNCTIOK FRC_

EITHF_ THE I':,H_'ACTrqISTIf, M_TPTX_
AR_ p_o ITS T_AN_cosE.

IAFtG = I P_eG{A_ Wltt U_E POTS

FPO,:_ AP TR_k'_PCSF.

nEFAULI VALUE IS 0 A_D

R.OOT.K FRCM Ar WTLL _E _,_E'_r.
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C

C

C

C

C
P

e,
q
F,
c
c
P

P

C
C
#,
C
C
C
C
C
C
#

hCTF - P;CGOSH EYTPACTS RCt'TS FC o noTH

A= ANO ITR TRA_SPf)SE. THTS SE_VES

_5. A _._T CF SELF CWECK C_ ,HE
I_COT NIJ/_L[TY. _LTHOUGH TT 'IS A
_AmE _CCUROANCC, mOP.IS ;'RCP A¢

T;ARSPOSE CAN FE -¢tEANER- tRAN

T_nSE OETATN=D FPqM A_.

LeY( £,J) -- kC. Or a V_I_QLES TC FEEF "ACv-- TTyCr = ?

I'AX Oc X B VARIAe.LER CAK CE _F _ OACK FrlP
THE _rY_E T OSE_CC C_EI_ ICC_

TPANSF_R FUNCTIOn.

LRY(7,J) = LCCAL IO, C; FIRST q TC _ETAIK'.

tRY[ _,J) -- L_C,_L Iq. Cr S=_C_NI? E TC ccTAIN.

L;Y{ £,J} = LOCAL lO, CF THigh o TC _ETATh,

P

C
P.
C
C
P

C
C
C
C
C
C

MaT;IX SITE 3 "Y _;£YC r][FIkIkG _YcC_E_ _C =

TCLERA_CE_ _ TOL = (10.$_,EXP

FCR TPE JTH CYCLE -

I#YII,J) = _COT TnLEOAk'CE EXC#NE_tT

I_Y (2,J) = GaIN ?nLFoANCE EXCC_'C_NT

I_v(]_J) -- ;COT TOLERANCE =)tPONENT USEr TC

eE_OVE _HI¢T Fe£OI.IENCY (SU°eOUTTN= NIJM_]

NOTE - IF ROOT OR GAIN LE TOL, SET

ROOT OR GAIN EQ O.
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C
C
C
C
C

C
C
C
C

_0 ._00 ICYC=I,NCYC

IF (1TYPE ,E_. _) GC TO B_0

......... PcADINIT,FCQI'AT : 2OA_) (TZTLE(I),r:Z,20)
C

C _JC1CH_P_CTFR TITLE PeR T_Jh_FE_ FUhCTTCN
C I_EN'ITFI_AT _CN

C

C ......... _,EAO(N_TtFC_MAT : 5A4) (LICNAHF(I)_I=I_5)
C
C
C
C
C
C
C

C
C
C
P,

C
C
C
C
C
C
C
C
r
C
C

l_kJ_E(]) PE._MTT_ UP TO _. FCU_ rHARACTED

IDENIIFICATTON_ WHIC_ SELECT T_E
I=LCT P.ISFLAY _CI_E,

I_NAME(T) = WH fALL aLAN,)NO, r.T._ClAV._

AQE I_LE_E_TEO --- GO TO 500
vile C_srTE_IST_C _'CCT_
cO° TwE qYC;TEH 8PF R_L'Nr).

Lrk_'E(I) = _HROP_ r_tv A mO_,E DTS_L. AV.

= 6HNTf'_ _kLY A _TCHCLS _T¢¢L_V.

= WHNY_U O_LY A NY_UT,_T DT_,¢LAY,

= _'HNVHV °CTH _IC_OLS AK n hYCUT,_T.

: 4HQCHk GIVFS mOnE t NTPH?Lq_ _YqUT_;T.

= _"ROP'f r_ZVE$ A RoOT LCCU¢ _Te_LAy,
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C

r,

C
q
q
C
C
C
£
C
C

C
£
:f,,,.

C
C
f,.

¢

r:.

C
£.

nO 5JO IC_:I,5

TF (LpNA,E(!_.o! .En. 4H ) C.£ TO BOg

IF (LPr,_MF(IO°I ,Eq. 4_On.E

_'.OP, L°hAWE{IC_) ,EQ. _TCH

'.OR. LPI',AvE(I[CCl .EO. I.,H_kVflU
'P,C:. LP_A_EI_OPl ,EQ, k_hINY

".Oc. LPKAME(IOP) ,EO. 4H_CNN) GC TO 20_

f_ (LC_A_E(IOP) ,Er., AH_r.e'r) G_ TO 390

2_0 CONTI NU ¢"

•'_" F_ECUENCY ;E_PCN_E SECTTON '_'_

3_0 CCNTINUE

C
r:,
c.
C
C
c

C

C
C

c
r"
c
C
C

FwIK = FcEQUENCY _WE*:# LCWEP L_M_T

_'t*eY : P_F_Ob__Nf'Y ._W_F_P UPcER LIMIT

DP_,I_ = "TKIMUM 0_ AM_LYTEC--'_ C('R B_.OE_ _IC"Ot.q "LCTS

r)nMAX = _'AYT_'_J_ OB AMPLITUO: FP.R nPOE, kICPOt,q PLQTS
AwIK = HT_I_.UM AMCLITUr_E POP. _YOUT_T _tOIe

8MAX = _,AXIWUM e:I_LITUDE _OR _YCUIST _LCTS
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C
P.
C
P,
P.

C
C
P,

¢_ RCCT LCCU$ R_CTTCk _=

C ......... CALL CEArlTH (IJM_ 2, NRLC, ?_ KR!
r.
C
f-,

C
r.

P_ cOR TP.F JTN ROOT t CCT -
C

r' IJM(lyJ) = ISI_IM = 1

C = __
C
r

• =
P_

C

P.

C

r, ......... t'aLL _ZAO (kl, E, k_LC, v_, V":)
r.
C
n.
f,

f.,

C
C

_,_T_IX _TT=_ 2 By _,CLC Fr_o. _CCT L_P. II,e pEP, T CONTQt)L

_lr = _l_'w_r; r.g _CCT LOCI TC cE_Fr._V

_TA_TTkG cC_I_,T Te

OPEN L CCP ZF=.C,
_-TAOTTI_G l:CTk'V TT
OOEK L CPe I:CLE,
STA_TIhG ¢CTkT T_e
CLO_rl LCCP ¢CLg,

IJ*"(2,J! = .£L=_VEt_T LOP.ATTCk Tk OPrT AqDAy
FeD $TeQTINr, =COT LC_,'r.

MeT;IX _IZ" 6 P.Y _!;LC F'O_ RO_.T LCLI. US r.r._TChl PArA

I:0_ Tp_ JTH RCC'T L CCT -

4.,

C
C
C
P.

C

C
C
C
P.
P.
C
.c

C
P

C

R
C

Wl(2,J) = _L ._C_LF F_r.TCp, NO--WALLY
__Ct. = 1,

WlfT,J) = ALOC PHASe_ CCNTRPL PARAPETEP.

ALCC = +1, --- 1_0, DEG, PHASE,
ALOC = -1. --- 0 _¢._. =IaAC;E',

Wll_,,j) = XMIN MTN o,r't_L VALUF TC I::LOT,

wI(E_J) = XqaX MAX RF_L VALUE _O PLt_T.

WI(F_J! = VMAX MA_' IH_C;, VALUE TC PLqT ANt)

VMTK SET Tr_ - yN,ew,,

5C_ _CNTIkUE

RCTU_k
FNO
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VJ PROGRAM OUTPUTS

This section discusses the various program output information

and correlates the output data with both the input data and the

problem simulation. This information is presented in much the
same fashion as was the input data stream of the previous chap-

ter so as to better acquaint the reader with the actual formated

output as it is presented by the program.

It is pointed out that the output stream will not reflect cer-

tain outputs that occur from routines that identify troublesome

areas such as matrix singularities. Recall also that the basic

input routines READ and READIM can also print out input matrix

data as dictated by the user. These printouts will not be in-

cluded either. Reference is made to the theoretical volume

(Vol. I) and to the input data stream (Chapter IV) to correlate

certain outputs with both the theory and the user input require-

ments.
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C
C
c.
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
e.
C
C
C
C
f,

C
c
C
C
C
C
C

THE FOI_LnWT_IG LTST TnFNTIFIFq T4E
OUTPUT VA_TABLEq SIIMM_TZ£D On THF
PnEVTOuq DA_F.

r

NR

NH = NO. OF HTN_rq,

N_PT = 40. OF 5FNqOD P0TNTq.

NOFLT_ = _A. O_ CONTROL _Y_T_M OFf T_q.

= N0. OF U'5.

= N0. O_ L_Mmnao% (CON_TP_/NT_i.

: _0. OF _T_Tr FOU_TTON_o

: MAXIMUM DTMFklS_0NE_ NO. _ _T_q.

_o

NRFTA

NLAW

NE0

N@MAX

NHM_X

NqPu_X = M_XTMUM _TMENSTONE_ NO. nF _rNq0_ DOTNT_o

NMWM_X = M_WIMIJM _IMFNSTONE_ NO. OF MAM, UNfair,

NMW_OO = M4XIMUM DIMFN_0NED N0, OF M_M, WH_i_

_R R_DY.

NM0qOD = MAXIMUM OIM_N_IONED NO, _F M_Dr¢ P_R R_DY,

KWU = MAWIMI.I_ DT"FN_IONED NO, OF Utq PFR RhOY,
= _ + NMnRO_ ÷ N_WB0_,

WY = _AXTMUU hTMENSIONED qT_F FO_ _T&TF VFCTOR.

KU = MAXIMUM _TMFNSTONE_ NO, OF I1_,
= _'_M_X_(6 + NM0_00) + NMWMaX.
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C
C
C
C
C
C
C

OUTPUT V_DI_RLF_ Tr_F_NTTF'ZCATION SUMMARY

(CONTort)

C

_TARTT = _T_RT TTMF F_ TIME _E_N_V.

_ELTAT = TNTFG_TInN _TFP S_ZV.

FN_T = rN_ T_NF F_R T_ME _SPON_F.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C

C
C

C
C
C
C
C

C
C.
C
C
C
C
C
C
C
C
C
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c

c

C
c

C

C

C

c

C

C
c
C...... '--THF TOPOLOGY _R_Y t_T0P_L) RA,_ TH_ C_E FOt_l_Wq

C t]) l_i ... (_H)

C ......... l l
C ......... ? 1
C

T_T_ IS THF T_oUT T_T_F_ a_Y TT_P_

C
C

C...... ---T_F CON_T_sINT _Or?TFTCATT_NS F_ THIS CASF _ItOW

(1) (=1 •.• {_H|

THT_ IS THE T_DL;T ]_TF_FP _p_^v THnAT_
(qrF PgEVI0J.I_ CHAPTER -- THP_IT _T_}

(.,
C
C
C ....... -.. 1 1
C ....... -- 2 )
("......... 3 l
r ....... .. 4 1
c ...... .;. _ 1
C ....... L-- ." 6 1

C ......... 7 1
(-,
C

C ......... T_ SPrCIFIED INTTTaL HTN_F AN_I.FS
A_ _T_PLAC_MFNT_ (R_TAH) FOLLOW

C

C
C

C.......... 1 l

C ......... 2 1

C

C

_W_ I-3 = HTN_F AN_LE_ (CONqTqTrNT WTT_ TTYPFi.

_OW_ 4-6 = _IN_? _ISDLACFH_NT_- _ _(ATTVR Tn P.
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C
C
C
?
C
C-'---LLL-T_F 5=RCZRTFO TNTTA[ HINGr _ATFq (BETAHn) FntiOW

C

C (1) (_) ,,, (NH)
C
C---,--L.. l 1

C......... 2 1

C ......... _ 1
C

C ..... ----THE NO, _r ELASTIc _nnFS/mnDY AmmAY (I_@FLXl _nlLinwq

C

C ...... -L, I 1 THE JTH ENTRY T_ T_R NO. OF _La_TTr

C MOD_ Rn_ _ODY ,I.

C....... -'THE N0• OF P/0 HTN_F oOIFITS/RODY ARRAY (NHPOT} _(_L_wq
c
C (I) {_i ... rNR)

C
c ...... LLL 1 1 EiFM_NTS ARE T_F NO. OF =/O
C HT_Gr POTNTS ON EACH RODY,
C
C
C...... --'T_r NO• OF SENSGp P_TNTS/n_hY A_AY (NSPOTi _Oi'i'OW_

C (1) (_i •.. (NR)
C
C--------- 1 l FIIRMFNTS AR_ THE NO, OF SENSOR

C POTNTS ON EACH RODY,
C
C
C-'-'-'-'-TWF wOM. WHEFL/Rh_Y TABLE (NMOWi FOLLOWq

C
C
C
C ......... 1

. • °

? ......... 2

c---L-LLL_LN_W_nn

c

c

ROWq 1-3 = ANGULAR RATER.

RnWg ¢-6 = BISPLBCEMFNT PATES- _ _riATTV_ TO P•

(1) (_j ,,. (N=i

l COL J = ,IT_ BOny

| ROW I = NO, OF MOM, WHEELS ON ROSY J,

• ROW _ = NO. OR VARIARLF SPEED WHFFI.S ON ROSY J.
, ROW 3 = qUCCESqTVE ROWS ARF THE MOMENTUM WHFRL NUMBFRq

• ON BODY J (IN ASCENDTN_ ORnFR).; •
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C

C

c
C
C
C...... ---THF STATE VECTOg LFNGTH AQRAY (LENU) FOLLOW_

(l) (_i ,.. (?_NO ÷ ?)
C
C
C

C
C
C
C
C

!

THE ELEMF_!TS ARE THE I. rNGTHS _r SFAMFNTS
OF THE _TATE VECTOR,

O_DE_ T_

C II(1),U(_), .,LI(Nm),XT(1)...,XTrNn).RFTA.nFi TA
C

C

___-,..-L-THE Ln_ATION ARRAY (LOCU) FOLLnWRSTATE VECTOR

(I) (_i ... r?_N_ * 2)
C

C

c

C

! 1

LOCATInN IN THF _TATF VF_TnnLEADING rLrMENTC
? FOR THE _EAMFNTS DESCRIBF_ TN ARRAY (I FNtl),

C

L_n_Y (TFT_MWi
..... -'-'T_E SPFCIFIED SEN_h_ POINT/ROnY

FOLLOW_CORRELATION

(-

C

C

C

C
C

i 1

(I) (_i ,.. (NSPTi

THE JT_ FLEMFNT IS THE BOnY N_, _
WHICH RFklSO R POINT ,J IS LOKATFD,
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C

C

C
C
C ...... '--TwF Fnl_l nWTNG OATe TS SPEPTFTFD MOM. WHEEL TN_nDMeTT_N (IF ANY)

C AN_ COMTROLL_R TNFO_uATION

C

C
C ......... T_F SPECIFIED MOM. WHrFI. _ONTnOI. aRRAY (IMn) r_ll.hW¢

r

C

° .

C-

C

(1) (Pi ... (NOFMn)

l 1

2 1

3 1

COl, ,I = dIN MOM_NTLJM WHEFL

POW 1 = WHEEl_ S_N_OR POINT NO.
R_W _ = SPIN AXTg

_nw _ = I aCTIVF
= 0 Cn_qTANT SPEFD

r
C ...... L-'TWF So_CIFIFD MOM. WHEEL _ATEq _ND INrRTIAg (AMhi fOLlOW

C

C (I) (?i °°° (NOFMO)

C

r COL. J = JTH MOMFNTUM WHEEL

C ....... -' 1 l POw I = INITIAl. WwFFL SPIN RAT_
C......... _ 1 R_W P = SPIN IN_TTA

r

C
r ....... -'T-E Sp_I_IED C_HTnOLiER TNITTAL CONDITIONS

C (THE FIP_T NDEITA A_E INITIAL CONTROLLED gTaT_
r VA_TABL_S, THFRF A_E K A_DTTIONAL PARAMFTFRgi

C THT_ I_ THE USER INPUT ARRAY CNTDTA°

C
C THE ADnTTT_HAL K PAPAMETE_t TF ANY, A_

C AVAILAALF T_ THE U_ER E_P USER-PAK _ATA.

C
C THE FI_T NnELTA ENTnTFS IN THIS ARRAY

C ARE THF INITIAL CONDITIONS FOP THF
C CONTROL VARIABLES°

C
C
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C

Ct
C° _IlmP_UT|NF M_IGIO -- OUTPUT F_R R(GTD _DDY

Ct

C
C THF FOLLOWING TS TYPICAL F_P THF ITH R_OY

C
C..___.. __ _UMMARY OF T_PPIJT nATA FO_ _ODY T WHICH Tq RTnIn.

C
C....... '-TwF _X_ INFRTTA _AT_IX IS --

(1) (_i (3) (4) (_) (_i

1 1 TXX -]XY -TXZ q -SZ _Y
? 1 -TYX IYY -TY7 _7 0 -_

1 -TZX -7ZY TZ7 -_Y SX 0
4 1 0 SZ -qY u O

1 -SZ 0 _X n M 0

1 _Y -SX 0 n 0

C

C

C

?

C

C

C
C

C
C
C

c
C
C

I THE P-_ HTNGE NO. ^Nn THE FIILE_ _oTATT_N TY_F
ADP_A_ TN T_E FOII._wI_G IHTEGrP 6_PAY WHICH T_ _LI _WF_ _Y

AN ARRAY CnNTAININR_ llLF_ ANGLFq (1,2,3i, AN_ PAqTTTON

V_CTO_ COMPONENT_ (4,q_6) THAT o_qITION THE HTN_R T_Ian
wPT THE _O_Y TRI_O

..... DATA HF_F .....

Tr _O_Y I HAS ANY q_NqOR POINTS,

THE FhLI__WING WILL _E PRINTED

C
C...... ---rOw BOnY

C
C

C
C

C

C
C

C

T THE SRN_O_ POTNT Nn. ANO THR RIJLFa _OTATIn N TVPr

APPEAR IN THE FOLLOWING INTEGFq A_RAY W_ICH T_ _OllnWF_

_y AN 6RRAY CONTAINTNA ELJI.FP ^N_LFS (I,_,_), AND PO_ITTnN
VRCTOR COMPONENT_ t4_t&) THAT POSITION THF qFNChn TRIA_

waT THF _ODY TRIA_

i i-..-. r)ATA wFpE -- -

e.
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C

¢

C
r

C

C_
C # qlI_OOITTNF MSM_nC - nUTD|JT FO_ FLFXTRI. E ROSY, C_NqTqTrNT MA¢S MAT_TX

C

C

r

C

C

TYPICoL nUTPUT FO_ TTH RODY

T_IS SUq_OUTINF P_TNTg OUT S_V¢_AL M_T_TCE_ THat ao_

RrL_TFD TO THE FORM OF THF GOVERNING E_U_TTON_.

C-.-.-....g!JMMADY OF INmUT naTA FOR n0OY T WHICH T_
C rlEXIml.r W/CONSI_TrNT MlS_ M_TpTX.

C

C
C ...... '--T_T INPUT P_RAMETFRS--- IFRRM, IFnIAK, TFDIAn &PF

C

C g_F INPUT DATa FOR MSM_DC

C

C
C ...... -L-T_E JnOF TeqLF FnL|nWq---

C
C nE_RrE OF FRFF_OM _S TNPUT

C ¢_F TNPIJT D_T_ FOR _SMAOC

C . .

C

C ...... -'-'TwF _40nE SFLECTION VE_'.TOR FOLLOWq

K
C ,hDr SF.L_'CTIDN VFCTOR _S T_#D_IT

c rrr iNpUT O}t. F_r: m_;.(_rjt:C
C

C

C ......... FOP nor_Y NO.

C

C

C

C

C

C

C

C

C

TWr POSITION V_CTOR FRO_ THR rnnY nntntN
Th JnINT K lq

X= Y= 7=

WNFPF K IS JOINT COO_DINATrq

IISFD TO nFVELnP RIGID BODY MhDr_

qFF TNPUT DATA FOR MqHOOC
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C

C

C

C

C ...... --'T_F CnN_T_TFNT, p_p_TITIn_Fn MA_ MATRT× Tq--

T_T_ IS THE _F_8OTTTIO_F_ Ma_

C UAT_TX _J_ T_ _ONSTSTENT WTTH

C THF IOOF TAnLF.
?

C

...... ---THr _FpA_TITI_N_D u_D^L MATRIX TS---

C THTg lq T_F Q_psPTITIO_Fn _on_q

C _AT_TX. THE oow_ &_E CANSIqTRNT

C WTTH THE RFPsRTfTT_NE_ M_q_ MATPTX
C _N_ THE rOL$ ApR CONC?¢TF_tT WIT_

C T_F rLEMFN T_ _ THE M_F SFI_CTT_N

C VF_Tq_.

C

C
C ....... L-T,r -UN nF_u_g" TNF_TIA MATOTX (MU) TS---

C THTS IS THE M0 MATRIX k;0TCn aq
C
C EQUATION II-87 (VOL I) •

C

T_rpF TH_N FOLInWq ,AAT_TCES

C
C A PO_FFTpI_FNT_

C rOFXY _O_FFICI F_JT_

C cnrx7 _Ov_FTrTENTg

_FY7 rOFFFICTFNTg

C
C WHICH ADF THE A| PHS, R, ANn r COEFFICIFNTS

r GTVFN IN THE FXO_rqqI AN

C EQUATION II-88 (VOL I)

C

C

C--

C T_F_F THFN FOLI. OWq M_T_TCFq

C rl_, C13, C?_

C
C WHIC_ ARF !nENTTFIFn IN

C EQUATION II-89 (VOL I)

C

opo ,
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C

C

C

C*
C* qlla_tlTTNF MSMAOL - _tJTPUT FOP FLFWIBLF RADY, LUMDFn MaqS M_T_TX

P_

C

¢
C

C.

C

C,

C

C

C

TYPICAL OUTPUT FOP TwE ITH _h_Y

T_T_ qLJ_RhLJTTNE PRINTK OUT _FVF_AL MAT_ICVK T_AT APt

_FLATF_ T_ THF _M _ THC _OVr_NIN_ FOL.IATIO_q.

C

C

....... L- ,,TOUTM TPTr S
C

C

C

?

r

C

C...... ---hI_T_UT MATRIX

C
r

" MATPTCFSC ......... _l.J TDIIT

C

C

C
C

C

C

T_F PrA_ _ WILL RF _F_ERRFn Tn Vnl I bN_ THF TN_UT

n_TA CT_EAM Fh_ _I;_THFP CLARIFTrATION.

TM_, STAT0, _A_qS0, n0CAFF, A_CAFF, FrO_F

AP_ THE _I, -q, M, De 8, F, PA_TTTTONR

PF_PFCTIVFLY _F THE MAT_TX M_ Ar EQUATION II-87

TN VqL T.

MLIO IS _^TRT_ M0 OF EQUATION II-87 (VOL I) .

ACnR, _ChF, CXY, CXZ, CYZ,

^DF TH_ ALpwA, _, AND C

#OFFCICIFNTS IN THE MaTPIX

_?VT_ AS EQUATION I_-88 (VOL _)
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C
C
C
C
H
C
C
C ...... ---Ot_TPUT MATRICES

f':.
c
C
C
C
C
C ....... --OIfTDtJT MATRIX XF0

C
C
C
C
C
C..-.-'---ntlTDtlT MATRIX xF. nn

H

Cl1', C22, C33,
¢1:', C13, C?_

6_R THE C_NSTTTUENTS OR THF

M_TRTX r,TVEN aq EQUATION II-89 (VOL I)

C_NT_TNS THF T_ITIAL MODAL
_FFLFCTTONH. (aH INPUT)

C CONTAINS THE INITIAL MnOAL

C vriOeITIr_. (65 INPUT)

C

H
C ...... ---FOP R_DY I THF D-_ wING_ _n,, THF FIILF_ ROTATTnN TYPF

e AND T_r JOINT N_, _DESPONDIN_ T_ THF _-_ HTktGF
C AmDEAQ TMTHE FOI_LOWI_G INTFGFR AP_AY WHICH _ r_LtOWrn BY AN

C _P_AY CONTAINIHG rtll r_ AN_LFS THAT P0_ITION Twr HINAF
C T_TaO W_T THE RO_Y TRTAD :

C .... n_Ta HE_K .....

C
C TE RODY I HA_ ANY _FNSO_ POiMT_*

C TWF FOLLOWING WII_L _F PRIMTED

C
C
C-' .... ---FOP ROnY I THE SFN_O_ POINT Nn., THE EUtF_ _oTsTTON TYPR
C ANO TWR JOINT NO, C_E_P_NDT_'_ TO THE _ENH_ _OTN T
C A_PFA_ iN THE FOI;L_WING INTEGF_ ARRAY WwICH TH _OLIhWF_

_y AN APRAY CONTAINTNA FULFR aNAI.FS THaT P_HTTTON THE

C HrN_0_ TRIan WRT THF _OOY TRIAD
C
H .... n_T_ HE_F .....

C

C
C

Cttttl_l_tittttttttttttttllt_{_lltttitt{_{it_tttlti{_t_tltllt_tlt{lt
4t
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tR THF USED UTILTZRq POLYNOMIAL _NPUT FOR

C_NTPOI.' SYSTEM TpSMSF_R FUNCTTOktSv THE FOLLOWTN_
MJT_IX WILL nE P_TNTFn,

C
C...... -..-OIITPUT =4ATRTX CPLYf_(PI'Y,2eNPLY)

C

C

C
C

C

C

WwFPE KPLY = _OW nIMENSION _IZE OF CPLY TKI _U_OUTTNE CnNT_II

NPLY = Nh, nF INPUT POLYNOMIAl gATTO¢

COL I : _FN_MINATOR DOL.YNOM_AL C_FFFT_TFNTS
T_l _SCE_'_NG _PnER

COt_ J*l = NIJMrRAT_R PGLYNOMTAL COFFFIPTFNTq
TN _CEMn]klG _PnER

_t_TF - K'X : NQ. OF NON-ZFPh _NTPT_ TN APPAY TM_EP

C

r

C

c

(i.

C
C ..... L---TWE FOLLOWING INT_ArR ARRSy (TNnrP) PRFqCRTm_ _ TNnFPFNh_NT

C V_RIA_i.'F_ (1) AN_ n_P_N_EHT V_PT_t.E_ (_)

C
THF _LEMFNTS O_ TH]_ _AY T_FNTTFY

C WHTC_ VAPTARLrR qURVIVF .IN TWF FIHBU

C Kr_PCH Ta DETFpMINF AN IN_FPFN_FNT

C qrT TO _F INTrARATFn,

C

K T_ (IJRVTVING VA_IABI_K Wilt. 81__h
PF_P_SFNT TH_ _I_ST NX _OWS OF

C TWF I INE_IZFD MAT_IX_ A, tlSrn

C gy SlIRPOtlTTNF _YNS40,

C

C

C
?

C
C

C_i_i_i_lllilil_i_ll_il_i ___i___ll_i_}$
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C

C

C

C

C_

Ct _Iloo_UTtNF DYNamO OtJT_IIT

C_

THr P_TNTOUT Tq TYP_&[. FO_ A G_VEN STMIJt. fiTTON TTM_, To

TNF T=O PPT_!T OIIT T% ALWAYS GTV_N

(FVRN rn_ _ i TNF_T7ED _NSLY_T4i

THE D_T_ _r _EgEmTFD _N VE_TO_ F_M _

C ......... TPF STATE VECTO_ ¥ =

C
C ....... --T_E STATE VECTO_ TTmE DE_TV_TTV_ YDT =

C...... '--T_F _FT_S (FULF_ _N_LrS_ _OS[TThN CO0_DTN_TFgi _F

C---------T_E D_LT_S (CONTooi SYSTEm V_T_LES) _F

C

¢

==
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C
C

C

C
c-' .... :--
C

C

C

C

C

C

C
C

C

C

C

C

C"

C

C

THE ROLLOWING TNrn_MATInN I_ TYPICAL F_R _n_Y T.

C

C

C ¸

r

C

C

C

(-

OO_F_ Ig

THE Vrl hCTTIE_ ARR

OMAX
nM_Y

hMA7

ROnY ANAIgLAR VELOCITY

IP

V

w

BODY T_AN_L.ATIONAL VELOCITY

XTn(?)

XTn(NFi

_ODY MO_AL VELOCTTIF_

THrT_n(i)
MOUFNTt}M WHEEL ANGULAR VFL.OCTTY.

(RFtaTTVR TO SFNgOR aOTNT T_TA_}

(ACTIVE WHFFL)

......... FO_ R_DY I THE CnaRFSDONOING MhMENTA ARE

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Oa_EP IS HX
Hy _ODY aXFq aEF• AN_tgLAR MhMrNTUM
H7 (INCLS C_NTRIRUTION OF _ON_T. CPF_ WHEELi

lX
t.Y i_l')r')Y _,XEq REF, LINEAR MOMFNTIIM

L7

. xT(li

p XT (PI
• RODY AXEq _EF, MO_)sL WOMFNTUM

P XT (Nr}

H Mw(li
• _ODY AXES RFF• MOM WHEF|. MhMrNTUM

• (ACTIVE WHrEL)
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.r,

C

C
C

C

C
C...,,.L.L.rOR _0r)Y I ITS CONTribUTION Tn TOTAL ANAULAQ

C ANn LTN_-'AR MOMrNTUM T_

C
(,

C
C
C.
C
£
C
r.

nRnF_ IS l.lX
HY _ NP-UI._AR _OMFNTIJM

_7
(RFF_RENCrD TO INERTIAl_ ORT(_TNi

LX
LY t- INFAI_ HOMFNTUM

t7

C
C....... --FOR AOnY T IT5 CnNTmTmUTION Tn TOTAL KINETIC ANn

POTENT?_i rNERGIFq lqC

C

C
c-_-L-LLL-rnR RhnY I THE ELASTIC _RFLFCTION_ ARE

C
C
C ....... L'T_E INTFDCnNNFCTInN CnNSTPJINT rORCE_ (I AMR_A_i ARt

C
C
C ...... '.-T_F TOTAl_ ANGULA_ MOMrNTUu VECTOR IS

C
C YtYtZ _MPnNENT_ IN TNFRTIAL RFF. aXIS _YSTFMo

C
C
C ..... ..L-T_F TOTAL LINEAR MOMENTUM VECTO_ IS

C X,Y,Z KOMPONENT_ IN INERTIAl. REF. _WT_ SYSTFM°

C
C
C.....,_-THE TOTAL ANGULA_ M_MFNTUM =
C---- ..... TwE TOTAL LINEAR MOMENTUM =

...... L_LTWr TOTAL KINETIC FNEDGY =

...... ---TwE TOTAL POTENTIAl.. ENERGY :
C......... THE TOTAL ENERGY (T,V) =

C
C

_t_tttlt_tttttltltttltlttt_tltttltt_lttttttlttltttttttltttlltttt_ltltt
4_
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C

C
C
C
C
C

C_
C e _I_IJT_N_ DYNamO OIJTDUT
Ce

.C
C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
¢

SIJMMARY n¢_" PL'OTTTNG TNrORM_TTOk_

THF nUTPUT _IJMM_D_ZE_ THF _NPlJT _TA

_HTCH CO_T_OI_LFP TH_ TTME RE_PnNSF

Pt. 0T L0_TP.

SEE TN_JT OATA FO_ _YNS_0 rn_
OETATLF_ nE_C_TPTT_N_.

NOTF- THE OLITC_UT VA_TA_LF' N_PLOT
TS THF NO. OF lOGiCaL RECOI_I_S
WIq'ITTI:'H Ok? THe" PLIgT TAP_,

C

41.
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C
C
C
C
r,

C ,

C # ¢u_onlJTTNF nyNqAn OUTPUT - i INF_QTZFD SYSTFM _NAI YKT_

C*

C

C

C

C

C
c

c
C

C

C
c

c

C

C

C
C

C

C

C

C
C

c

C
C

C

c

C

C

C
C

c

C

C

C
C

C

C

C

N,IO : TOTAL NO. OF F_UATION_

LTtJFARTTFD (TNCLI_DINA

AUtIllamy EQUATIONS £pnM
SU_pOUTT_JE EQADn)

NX : NO hF TNnFP_ND_NT STAT_ _Q0_TInNK

DETFP_TNrD RY rINDU IN _VN_2n.

THTS iq THF ._TRTX OF PARTIAl nF_TV_TTVF_

WwTC_ ARF THF I_INEARII_D COMDONFNT_ Or TWF
qTaTR VAQTA_LR_ AS DETFn_TNF_ mY

KIIm_UTTN_ LTNFAR,

TwF O_DEP OF THE VA_IAmLFS rn_ TWF

PLANT VA_TARLFR

CONTROL VARIABLFS

_IZF

NY

NOELT_

KONTPOLLF_ OUTPUTS NBTO

SENSOR SIgNaLS NX_

TWF _OLIJUN O_DFR I_

PLANT VARIABLES NY

CONTROL VAnIABLES NDELTA
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C
C
C
c
C
C
C ..... ,-L-ntjTPlJT MATRIX -T- (NX,NX)

C
C
C

C
C
C
C
C
r

C

TwTS IS THE ¢IMILARI TY
T_NqFORMATInN MATRIX
THaT INTPOOUCEq THF {_TO + NXcqi
AtlXIiIARY VA_TARLES INTO TWr

TpANcFOR_ED _T_TE F.OUaTIaNS.

=_=. MATRIX Q TN EQUATION 111-24 (VOL I)

C...._._,_OI_TOUT MATRIX

C

C
C

C
C
C ...... .--OUTPUT MATRIX A_ (NX,NX)

C

t"

C
C
c
C

C

C
c
C
C
C
r.
c
c
C

C
C
C
C
C
C
C
C
C

Y_ (I,NX)

THT¢ T_ T_r TRAN_FnRMED cT_TF
VFCTQP INITIAL CnNnlTIONS.

Rrr. VrCTOR I TH EQUATION III-24 (VOL I)

THT_ T_ TH_ TPAN_FORME_, LINFAPTTFn

STATE VARIABLE COEFFICIFNT MATDTW

THAT IR THE BASIq rOQ THF FNTIRF
LTNF_R_ZATTON PACKAGE.

qrF, EQUATION 111-28 (VOL I)

THE _0w/COL VA_T_BLF_ ORDERING ann

ST?_'S aRE:

V_QI ABLE ir_. _;TTr

Pi'_NT VARIA_Lr_ NY2

pl _NT SF.NSOR STGNALS NWS_

CONTPOL _YSTFM VARIARLF_ NnP

CONTPOL OUTPUTq (BtS) N_TO

NOTE- NY? = NY - NXS_

N_? = NDF'LTA - NBTQ
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C
C

C
c
C
C-L-L-.-L:.

C
C
C
C
C
C
C
C
C
C
C
C

_T A

_F61 PA_T _M6_TNADY PA_T

PT_O

RF6L PART TM6_TN6_Y PADT

_nMDi'EX RQOTq nQTATNED FROM

A AND 6# PFqPECTIVELY.

THESF aRE THE PhLFS OF
T_E CLOSEn lOOP _YSTEM.

C
C
C
C
C
r.
C...... ---(llYTPUT MATPTX -AP-

TNF FOLLOWIN_ hUTPUT_ 6RF _HARACTE_I_TTe hF

SINGLE TRA_¢rED FUNCTION FREOUF_eY RF_Ph_F,

THTS IR THE aFBUCED A* MATRTX
FO_ A PARTICIJL6R USER SPECTFTF_
TaAN_FER FUNCTTON TYPE,

.F E, INPUT O_TA LIST 6N_
SFCTTON TTT. 0-2. IN VhL T.

TH E RO_T_ hr A_ _RE THE
TR_N_FFR _UNCTTON POLFq,

C ......... nUTPUT M6TRTX BCOL.

C
C TwTs I_ THE VFCTnR (COL) WTTW WHTeW

C 6P I_ AUAMENTFD TO DETERMTN_ THF
C TPANCFFR FUNCTTON ZEROS,

C
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C

C
C
C

C
C_.-.-.LLL
C

C

C

C
C
C
C
C

C

C
P

C
C....... L_

C
c
c
c
C
C

C
?

C
C

C
C

p AI_ RA_T

oEAL pART I_AGTNAPy PART
RFAL PART IMAginARY PAQ+

THF_F ARF THF COMPLEX POOT ^_¢_Y_

aK EXTRACTFn _OU MATRTCES
ja AND AQ T_AN_POSE RF_ECT TvFi Y-

T_E IISE R SELECTS VIA I4PUT WHICH

qrT nF _OOTS Tn USE FnP THF PhLFq.

NUM

REAL p_RT ,TM_TktA _Y PA_T

!

NJMFRATOR R_T_

{T_SNSFER FUNCTThN 7ERO_i

hEN

_FAL aAaT IMA_TN_RY _A_T

i

_ENOMT_!ATOn _OOT¢

(TR_NCFE_ _I;NCTTON P_iF c)
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C
C
C
(,
C
C
C---'-----_IITPUT MATPTX RPFn

C
C
C
C
C
C
C
P.

C
C
C
C
C
C
C
C
C
(,
C
C
C
C
C
C

C
C
C
C
C ji THRIJ NNR+7

C
("
C
C
C
C
C
C
C
C
C
C
C

TRANSFER FUNCTTON ROOT ARRAY C_NTATNTNG D_T
C_IINTSt TI_F _nNqTANT_ _AMPTNGe A_I_ FP_II_NCY

c_R ZFROS AND P0tES.

FI.E 1 = N_. OF NUMFaATOR REAL. R_OT_, MNa

FLE ? = NQ. OF htLtME_ATOR COMPLEX RAT_, NNC

FLE 3 : N_, OF NUMERATOR FRFE S'St NN7

ELE 6 = NO. OF _FNOMTNATOR RF_L p_oT_, NOR

ELE S = N_, OF nFNOMTNATOR COMPLEX DATR_M_P

ELE 6 = N_. OF _FN_MTNATOR FREE So_q N_7

FLE 7 = nn_F GATNt Wn.

THE DOOT_ FOLInW IN THr ORn_

ELFMFNT LOCATTnN

NNR+R THRU _INNC +

_r_PR_PT_nN

NUMrRATOR TTME cn_TANT_

NUMERATOR DAMDTN_ Akin r_EQU_N_TFS --

ZffT_l, OMEGAI, 7FT_, OMF_A_ ---

F_F StS ARE NnT _NCLUnE_

PFM6_NZNn ELFMFNTS ARF OFMON_NATOR ROOTS TN SAME
OROER AS NUMF_AT_R ROOT_ TEet

TAU(|),.o,TAUINOp),ZFT_(|),OMEGA(li,.o,_rTAfN_C),nuEnA(NDCi
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VI, AUXILIARY PROGRAMS

This section describes two auxiliary digital codes that have

been developed to aid the DISCOS program system user. The first

code is a FORTRAN program which accepts the DISCOS code as input

and, based upon some additional user-supplied input, automatical-

ly redimensions the DISCOS source program to minimize core stor-

age requirements. The second code is a DISCOS/NASTRAN interface

which processes user-supplied NASTRAN generated data into the

required DISCOS input formats.

Ao REDIM - THE REDIMENSION PROGRAM

This code was developed to aid the user in the efficient use of

available digital computer core storage locations. Examination

of existing digital computer codes for generalized analyses of

(possibly) large systems indicates that very frequently the

nature of the code dictates that a great deal of core storage

locations are required (due to the sizes of program DIMENSION

and COMMON blocks). This often leads to inefficient use of

core storage as the user must have available sufficient core

storage locations so as to satisfy the program size. As a

large percentage of program executions probably don't require

the maximum dimension sizes of program storage blocks, it is

obvious that a automatic procedure to alter t_he program code to

meet a user's specific requirements would be desirable. Program

REDIM was developed to satisfy these requirements.

REDIM is a self-contained code that contains an extensive list

of format statements. The code reads the DISCOS source code

from tape as coded data and reproduces it on the tape unless

it finds an identifying format number in columns 73-75. In

this case, it rewrites the source code according to the format

corresponding to the identification. REDIM, therefore, provides

an efficient and foolproof method of recasting the source input

code to meet the user's requirements.

Following is a more detailed explanation of the manner in which

the REDIM program can be used.
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C
C

C

C
C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C
C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

THERE IS N_ CARD INPUT 9AIA _EL,UIRED FOF_ T_IS

PROGRAM. IF A USER WISHES TL RESIMENEIC.N THE

DISCO, < PROGRAM VIA THE kEDIMENSION PF,I]GEAM

HE MU5_ MAKE IHE NECESSARY ABJUS'I_EN'_S TO
THE VARIABLES _NDICATED BELOW (AI,_D DEFINED FY

A PROGRAM DATA SIATEMENT), RECOMPILE A_.[

EXECUTE THE REDIM PROGRAM

THF FOLLOWING PROGRAM DATA V;,RIALLEE C$.N EE

ADJUZTED

CU_ Eh!T VALVE

NBMAX

NHMAX

NSPMAX

NMWMAX

= MAXIMUM NUMEER C_F LCD_EE 6

= MAXIMUM NUMEER C:F HINGES

= MAXIMUM NI_MEEE OF SENSC'R POINTS 15

: MAXIMUM NUMBER CF ME]MENTUM WHEELS 5

NMWEOD = MAXIMUM NUMSER OF MOMENTUM
wHEELS PER EODY

: MAXIMUM NUMEER CF ELASTIC

MODES PER _ODY

z.

]2

KY = MAXIMUM NUMBER OF STATE VARIAELES 2_C

JMAXC : MAXIMUM NUMBER OF JCI_S UN A

ECDY - COnSIStENT MASS

JMAXL : MAXIMUM NUMBER OF JOINTS CN A

_ODY - LUMPED MASS I05
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C

C
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C
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

CUF F,ENT VALVE

MAXZP = RCW DIMENSICN CF TIME HISTC,_Y

PLOT DATA ARRAY O0 0

MXJVPL = SIZE _F TIME HISTCRY _-LCT

VArIAbLE SELECTIEN VECTOR -- MUST
NOi BE CHANGED -- 16

MAXBUM : SIZE OF DUMMY VECTOR IN T!ME
hIS'IORY PLOT EECT;CN --Mt_SI

NCT E.E LESS THAN NCPL(T -- i ._,,j 0

MAXCNT : SIZE GF CCNT:.CL DATA VECTC',R _(JC,

L1 : _OW DIMENSION _JF _L&K .(P;,C_

THAT WILL ACCCMMCDAT_ TF,E
LINEARIZED COEFFICIEK, I MAT_,IX

(A) IN C,YNS_,u ._EL=FIENT IOC'

L_, = SIZE CF F,_CCJENCY _ESF-[I_S',

•DATA VECTCRS Af,.D C(._,R_._.._PC,KZS

TC MAXIMUM NC. ZF PCIt,_TS TC

EE PLOTTED

C ,.
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Bt NASFOR - THE NASTRAN INTERFACE PROGRAM

The multi-purpose programming system described herein can be

made more versatile if a reliable and efficient means to pro-

cess input data arising from other sources can be provided.

One other source of input data is NASTRAN, a digital code that

is gaining wide acceptance in the aerospace and other industries.

Program NASFOR, described in this section, was developed to pro-
vide an interface between NASTRAN and DISCOS. The program as-

sumes NASTRAN generated structural data is available in a

prescribed format and transforms these data to a format accep-

table to the DISCOS system. Either tape or punch card data

may be processed.

NASFOR is a self-contained code; it processes data from one

source (NASTRAN) and generates data for application in DISCOS.

Originally, it was felt that this interface should be an inte-

gral part of the DISCOS code. However, during development, it

was realized that this would impose a large overhead on the

dynamic response program and it was, therefore, decided that

NASFOR should be a stand-alone program.

NASFOR has the capability to process either tape or punch card

input and create either tape or punch card output. The output

formats are consistent with the input requirements of the DISCOS

program system. The input formats assume that NASTRAN generated

data is double precision and in OUTPUT2 format if on tape or is

single precision and of the format (24X, 3F8.0) if on punched

cards. Reference to the example following indicates the format

requirements for all other date required to exercise the pro-

gram.

The code was designed to process NASTRAN generated structural

data for a series of bodies and to create DISCOS input compati-

ble with subroutine MSMODL, the lumped mass input routine. It

is assumed that the available data is in a specific format as

follows:

For a body whose inertial and geometric characteristics are

defined at a set of NJ discrete joints,

Vl-4



i. Inertial Properties

mi =

m S -S
z y

m -S S
Z X

m Sy - S x

J -J -J
xx xy xz

(Sym) J "J
yy yz

J
zz 6x6

where m = m,3ss

S = static mass moments
x_y,z

j _ inertias
XX,..._ZZ

and the total assembled mass matrix is of the quasi-diagonal

form

M _.

mI

m 2

50
6NJx6NJ"

2. Joint Coordinate Locations

i) card input data

G = [ x y Z]NJx3

with x = x 1 x 2 ....
1 xNJ

Nj] TY = |LYl Y2 .... Y IxNJ

VI-5



[ ITz = Zl z2 " " ' ZNJ ixNJ

or ii) tape input data

G=G 1 - GO

with G I " In x y ZINJx 4

where n - Lnl n 2 . . • nNjj TixNJ are joint numbers and will be

ignored by the tape reading section and x, y and z are as above

and GO = Ix o Yo zo] Njx 3

where xo, Yo and zo are user-supplied card inputs and may be
null.

3. Modal Properties

where _R = NR rigid body modes

@E " NE elastic modes and NM = NR + NE

and where

5" ['1 *2''' %''' * Ix6N3

and _i" [hxhyhz _x _Y =zjTix6

with h
x,y,z

= modal displacement amplitude

w modal rotation amplitude.
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4. Generalized Stiffness and Damping

K[gon]ExNEandc°Cgen]NExNE

The data input as previously noted, are manipulated within the

program apd the results are written on tape and/or provided as

punch card output as follows:

i. inertial properties

LmM = i m2 ..... mNj IxNJ

S

Sxl Syl Szl 1

SXNJ SyNJ SZNjJ
NJx3

Jxxl JYYl Jzzl Jxyl Jxzl

JxxNJ JYYNJ JzzNJ JxyNJ JxzNJ

JYzl ] "

JyzNJ
NJx6

,

G=

joint coordinate locations

Xl Yl Zl ]

XNj YNJ ZNJ
NJx3
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3. modal properties

= - hl,l
x,y,z

hNJ,l
- x,y,z

h 1,2 .... h I,NE -
x,y,z x,y,z

......... hNJ,NE

x,y,z_ NJxNE

= - i,i
x,y,z

NJ,I

x,y,z

1,2 I,NE

ax,y,z .... _x,y,z

NJ,NE

x,y,z

4. generalized stiffness and damping

K
gen KII KI2 KI,NE

KNE,I .... KNE,N E
NExNE

C
gen

-CII C12 • . CI,NE

CNE, 1 .... CNE, NE
NExNE
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NASFORconsists of a main program, 8 program subroutines to pro-
cess the data and i0 auxiliary input/output routines. The func-

tion of the program routines is indicated in Table VI.B-I. and a

logic flow diagram appears as Figure VI.B-I.

Table VI.B-I. Description of NASFOR Subroutines

Subroutine Function

MAIN

TFETCH

CFETCH

GMASS

GMODE

GGEOM

GSTIF

GDAMP

PRINTT

Program control

Fetch a matrix from NASTRAN tape

Fetch a matrix from cards

Generate mass data

Generate modal displacement data

Generate geometric data

Generate stiffness data

Generate damping data

Print entire input tape (on option)

The code has been designed to minimize input data requirements

yet provide a high degree of flexibility. Following is a de-

tailed explanation of the input data stream requirements.
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IFLAGT - 0IFLAGC - 0
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C
C
C
C
C

C
C
C
C
C
C
C

PROGRAM NASFOR INPUT DATA STREAM

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

PROGRAM READS NASTRAN OUTPUT TAPE AND/OR CAEDSI
MAN].PULATES THE DATA AND WRITES (PUNCHES) TAPE
(CARDS) TO BE USED AS INPUT TO PROGRAM DISCOS

PURPOSE -- PEOCESS NASTRAN STRUCTURAL DATA
FOR A SERIES OF FLEXIBLE BODIES
AND GENERATE DAIA C_NSISTENT
filTH DISCOS SUBROUTINE MSMODL
INPUT RE_U|REMENTS

ASSUMES -- FOLLCWING NASTRAN DATA AVAILABE
FOR ALL FLEXIBLE BCDZES

MATRIX SIZE

MASS - LUMPED
MODES
GEOMETRY
STIFFNESS - MODAL
DAMP|NG - MODAL

6NJ X 6NJ
6NJ X(NE÷NR)

NJ X
NE X NE
NE X NE
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C
C
C
C
C
C
C

C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

C
C
C

C
C
C
C
C
C
C
C
C
C

ASSUMES --

I.

0

D

NCTE -

WHERE NJ.= NO. OF JOINTS ON BODY

NE = NO,, OF ELASTIC MODES RETAINED FOR BODY

NR = NO. OF RIGID BODY MODES

NAS'rRAN MATRICES WRITTEN DOUBLE PRECISION

(REAL=8 OR ITYPE = 2) IF ON TAPE

NASTRAN MATRICES WRITTEN SINGLE PRECISION

[FORMAT = 24Xt3F8.O) IF ON CARDS

MAX[NJ) = IO00

MAX(NE) = IO

MAX(NR) = 6

-- REDIMENSION IF SO REQUIRED

C........... INDICATES WHERE DATA INPUT

IS REQUI_ED

C .... 9999
C
C
C ............ CALL COMENT

C

C

NIT = INPUT TAPE NUMBER

CALL START [SEE FOLLOWING)

(SEE FOLLOWING)

C............ READ(NITtFORNAT " 315) NTAPEIt NTAPE2, NTAPE3
C
C
C
C
C
C
C...... READ(NITtFORMAT = A6) TAPEID
C
C
C

NTAPE1 = LOGICAL UNIT NASTRAN INPUT TAPE (EG, 20)
NTAPE2 = LOGICAL UNIT OUTPUT TAPE [EG, 30)
NTAPE3 = SCRATCH (EGt 40)

TAPEID = 6 CHARACTER TAPE IDENTIFICATION (EG_ L12345)
r
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C
C

C
C

C
C-

O
C
C
C
C
C
C

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

READ{NITtFORMAT- 415l IFPRTIt IFPRT2t IFPRT3t IFPNCH

IFPRT1 NE 0
IFPkTZ NE 0
IFPRT3 NE 0
IFPNCH NE 0

PRINT NASTRAN DATA
PRINT OUTPUT DATA
PRINT NASTRAN HEX TAPE
PUNCH O_TPUT DATA

IF ERROR FOUND

........ READ{NIT,FORMAT = I5} N5

NB = NO. OF BODIES FOR WHICH DATA AVAILABLE

ON TME NASTRAN TAPE (EG, 2)

IF(NB .EQ. Ol STOP WRITE ERROR MESSAGE

AND TERMINATE

THE FOLLOWING LOOP IS EXECUTED FOR EACH BODY

DO 5000 NBODY = IvNB

....... READ|NIT,FORMAT = 315) NJ, NEt NR

NJ = NO. OF JOINTS ON BODY (EG, 11)

NE = NO. OF ELASTIC MODE RETAINED FOR BODY (EG, 5)

NR = NO. OF RIGID BODY MODES (EG, O)

C--- ......... READ(NIT,FORMAT = 5(AWe_bX)) ((IDMAT(1,J)tJ=It5)tI=I,2)

C
C
C
C
C
C
C
C
C
C

IDMAT IS AN INPUT ARRAY OF SIZE 2 X 5 THAT
DEFINES THE ORDER OF INPUT DATA TO BE READ
FROM TAPE OR CARDS BY MATRIX FUNCIION AND

ALSO SPECIFIES WHETHER DATA IS TO BE READ

FROM TAPE OR CARDS

THE DATA WILL BE PROCESSED IN THE ORDER J=1,2,..,5
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C

AN EXAMPLE IDMAT ARRAY IS

IDNAT = *
*GEOM
s
*CARD

MASS MODE STIF

TAPE TAPE TAPE

DAMP*

TAPE*

AND INDICATES DATA TO BE PROCESSED AS

i. JOINT GEOMETRIC DEFINITION FROM CARDS_

2. JOINT LUMPED MASS DAIA FROM TAPE

3. ELASTIC MODAL DATA FROM TAPE
4. MODAL STIFFNESS FROM IAPE

5. MODAL DAMPING FROM TAPE

THE FOLLOWING LOOP IS EXECUTED 5 TIMES PER BODY

C ,m,i,iwg.m. iDi_ _.41

C
C .......... IF(MATFMT .EQ. CARD) CALL CFETCH

C
C TFETCH IS TAPE PROCESSING CONTROL SUBROUTINE

C CFETCH IS CARD PROCESSING CONTROL SUBROUTINE
C

SEE FOLLOWING FOR DESCRIPTION

DO 4994 MAT = lt5

MATFMT = IDMAT(2tMAT)

IF|MATFMT .EQ. TAPE) CALL TFETCH(..t..t...t-.,.,..--)

4999 CONTINUE

5000 CONTINUE

GO TO 9999

END
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C
C
C

C
C
************************************************************************

C*
C_ SU_RCU_IF_E START - INPUT IDENTIFICATIONS
C*
************************************************************************
C
C.... READINIT,FO_MAT = Ab,4Xt3Ab) IRUNNO (UNAMEil)tI=I,3}

C
C IRUNNO = RLIN ]DENTIFICATION (b CHARACTERS)

C UNAMF = USERS NAME (16 CHARACTERS)
C
C IRUNNO EQ 4HSTOP - TERMINATE THE RUN
C IRUNNO NE ,,HSTC_P - CONTINUE THE RUN
C
C
C.... READiNITtFORMAT = 12A6) (TITLEI(IItI=]o|2)
C..... READ(_I]T,F_RMAT = i2A6) (TITLE2(1),I=ItI2)

C

C TIILEI = 72 CHA&ACTEF: TITLE

C I11LE2 = 72 CHARACTER TITLE

C

C REIL'RN

C END
C
C
C
C-
C

C"
C* SU6ROUT1NE COMEN'I - INPUT USER SUPPLIED COMMENTS
C*

C
C............. READ(NIT,FORMAT = 13AotlXtA1) (IREMRKil)_I=Itl3)_ IPGHD
C

C
C

C
C

C

C

C

C

C

C

C

C

IREMRK = 76 CHARACTER COMMENT
IPGHD = NEW PAGE FLAG

IPGHD = IHP -- NEW PAGE BEFORE PRINTING

THERE IS NC LIMIT TC THE NUMBER OF COMMENT
CARDS EUT THE LAST ONE MUST CONTAIN ZERO

IN COLUMNS I THRU IU

R ETURN
END
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C

C

C_
C_ SUBROUTINE TFECTH
C*

C
C THIS SUEROUT1NE READS NO INPUT DATA
C DIRECTLY BUT DOES CALL AUXILIARY
C SUBROUTINES DEPENDING UPGN THE VALUE
C OF 13_E INPUT ARGUMENT -MATID-
C
C THESE AUXILIARY SUBROUTINES READ

C DATA AS DESCRIBED LATER

C
C ....... IF (MATID .EQ. ]l CALL GMASS(..) LUMPED MASS DATA

C............ IF (MATID .EQ. 2) CALL GMODE(..) MODAL DATA
C---'- IF (MATID .EQ. 3) CALL GGEOM(.°) GEOMETRIC DATA

C........... IF (MATID °EQ° 4) CALL GSTIF(..) STIFFNESS DATA

C IF (MATID ,EQ. 5) CALL GDAMP(.°) DAMPING DATA

C

C R E TURN

C END
C
C
C
C
C

C*
C* $UEROUTINE CFETCH
C_
C_______________

C
C

C
_ i_m

C
C
C

C
C
C
C

C
C
C
C
C
C
C
C

100

THIS SUBROUTINE READS CARD INPUT DATA AS FOLLOWS --

READ(NIT,FORMAT -- A6,_X_2IB) ANAME, NR_ NC

ANAME = 6 CHARACTER MATRIX IDENTIFICATION
NR _ NO. OF ROWS IN MATRIX

NC ,= NO, OF COLS IN MATRIX

DO I00 1 = ],NR

READ(NIT,FORMAT " Z4X_3F8.0) (WR(J)_J=I_NC)

(WR(J),J=I_2_°.._NC) = INPUT ROW I OF MATRIX

CONTINUE

RETURN
END
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C

C
C
C
C

C"
C" SUBROUTINE GMASS

C_

C
C SU6RCUTINE READ_ OUTPUT TITLE CARD FOR

C EACH 50DYS MASS, STATIC MAS_ MOMENT AND

C INERTIAL DATA

C
C DATA READ ON FIRST CALL FOR EACH E.ODY

C
C READ(NIT,FURMAT = 3{Abt_X)) ANIt _.N2t AK3

C
C ANt = b CHARACTEE OUTPUT TITLE FOR MASSES

C AN2 = 6 C_.ARACTER _UTPUT TITLE FCR STATIC MOMENTS

C AN3 = 6 CHARACTER 6UTPUT TITLE FC,R ]NERTiAS

C

C RETURN

C EhD

C

C

C

C

C

C*
C* SUE RCUTINE GMCDE

C*

C
C SUEROUTINE READS OUTPUT TITLE CARD FOR
C EACH 5CDYS MOD_L DATA

C
C DATA READ ON FIRST CALL FOR EACH BODY

C
C ............ READ(NITtFORMAT = blA_t4X)) AN|t AN2t AN3, AN4, ANBt AN6

C

C
C

C

C

C
C

C

C

C

C

C

AN! , (- CFIARACTEk L.UrFUT TITLE FOR hX MODAL AMPS
A_; - b CHARACTEr. CUl _UT tITLE FOR HY MGDAL AMPS

A_3 ---_, ChARACT(:K CUT_c'T TITLE FOR hZ MODAL AMPS

AN_ = & C_i_.._ACTE& EUTPU'i TITLE FOR SIGX MODAL SLOPES

AK5 = 6 CHARACTLR OUTPUT FITLE FOR SIGY MODAL SLOPES

A'_o -" 6 CHARACTER C_bTPUT T,TLE FOR SIGZ MODAL SLOPES
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C
C
C
C

C*
C_ SUBROUTINE GGEOM
C*

C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE READS INITIAL GEOMETRIC DATA TO

BE MANIPULATED WITh INPUT TAPE GEOMETRIC

DATA AND OUTPUT TITLE CARD FOR EACH
BODIES GEOMETRIC DATA

DATA READ ON FIRSI CALL FOR EACH BODY

INPUT FORMAT FOR SUBROUTINE READ EXPLAINED

ELSEWHERE IN ThIS DOCUMENT

INITIAL GEOMETRIC DATA (MAY BE NULL) IS

PROVIDE _0 ACCOUNT FOR POSSIBLE

GEGMETRIC OFFSETS

C............ CALL READ (WStNR,NC,KWS,LWS)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

NR = INPUT NO, OF ROWS (MUST = NJ)

NC = I_PUT NO. OF COLS (MUST = 3 )

WS = INPUT MATRIX OF INITIAL

GEOMETRIC COORDINATES -- SIZE = NJ X 3

THE FINAL GEOMETRY FOR NJ JOINTS

WILL BE COMPUTED AS

* X(1)

e

o

* XiNJ )

WWIIWW_ WW_ _W_WW

Y(i) Z(l) * * *
_, . * *X Y Z*

. . ww * ( TAPE ) *

YINJ) ZINJ)* * *

*X Y Z*

* (CARD) *

SO THAT_ FOR THE ITH JGINT

X(I) = X(I) FROM TAPE INPUT - X(1) READ ABOVE

Y(I) : Y(1) FROM TAPE INPUT - Y(1) READ ABOVE
Z(1) _ Z(1) FROM TAPE INPUT - Z(I) READ ABOVE

C
C.... READ(NIT,FORMAT = Ab) ANT

C

C

C

C

C

C

AN1 = b CHARACTER OUTPUT TITLE FOR GEOMETRIC DATA

RETURN
END
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C
C
C
C
C

C*
C* SU_ROUT]NE GSTIF
C_'

C
C
C SUBRCUTINE READS OUTPUT TITLE CARD FOR

C EACH BODYS MODAL ST;FFNESS _ATA

C

C DATA READ Ch FIRS7 CALL FOR EACH _ODY

C

C

C READ(NIT_FCRMAT = A6) AN|

C

C ANT = 6 CHARACTER OUTPUT TITLE FOR

C MODAL STIFFNESS DATA
C
C
C RETURN
C END
C
C
C
C
C
C
C_ _ _1,_ • __ _:__ _ _:_ _ _ __:_:1) _ _ ___

C*
C_ SUBROUTINE GDAMP
C*

C __ ____ __ _____ _ _ ___

C
C

C

C

C
C

C

C

C

C

C

C
C

C
C

C

C

C

SUBROUTINE READS OUTPUT TITLE CARD FOR
EACH EODYS MCDAL DAMPING DAIA

DATA READ ON FIRST CALL FOR EACH BODY

READ(NZT_FORMAT = A6) ANZ

AN1 = 6 CHARACTER UUTPU7 TITLE FOR

MODAL DAMPING DA_A

RETURN

END
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APPENDIX A--INPUT/OUTPUT SUBROUTINE EXPLANATIONS

This appendix presents excerpts from SyntheB_s_of Dyn_c Sys-

tems Using FORMA--Fortran Matrix Analysis, MCR-71-75, Martin

Marietta Corporation, Denver, Colorado, May 1971, that explain

the subroutines from the FORMA library used in _he digital com-

purer program.

z

_C

L_

A-I



COMENT

Subroutine COMENT reads input comment cards and reproduces

each card in the printed output of the computer run. Each com-

ment card may have any keypunch symbol in card columns 1 thru

78. A use of COMENT is to print an explanation of coordinates

used in a computer run. Thus, this information is always re-

tained with a run to correlate matrix location numbers with

physical coordinates.

I_mt Ravisio.:

R. L. Wohlen

May 1971

R. L. Wohlen

S_pt. 1971
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INTAPE

i

!

Subroutine INTAPE initializes a tape (a disk is preferred. See

writeup of Subroutine WTAPE.) for the FO_A tape system by writing

EOT (end of tape) at the beginning of the tape (d_sk). All FORMA

tape subroutines recognize this EOT as being the end of written
data. Each "new" tape (disk) must be initialized with this Sub-

routine INTAgE to make the tape (disk) compatible with the other

FORMA tape subroutines (LTAPE, RTAPE, WTAPE, and UPDATE).

A "new" tape (disk) is defined as a tape (disk) for which it

is desired to start writing matrix data at the front of the tape

(disk). Thus, a "new" tape (disk) could be one with obsolete

FORMA matrix data on it as well as one that has never been written

on by the FORMA system.

As an example, pertinent statements from a program containing

INTAPE could be:

DATA NIT,NOTIb,6/

i001 FORMAT (12A6)

NRTAPE ffiI0

READ (NIT,IO01) IFINIT, TAPEID

IF (IFINIT .EQ. 6HINITIL) CALL INTAPE(NRTAPE,TAPEID)

The input data (starting in card column i) to this example

program would be:

either INITILTXXXX, if the tape is to be initialized.

(TXXXX represents the particular tape number

used, e.g., T1234);

or NOINIT, if the tape is not to be initialized.

The tape identification is not needed.

R. L. Wohlen

May 1971
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Subroutine LTAPElists the matrix headiz_gs(see Subroutine
WTAPEwriteup) written on a FOR_ tape (or disk). Thesematrix
headings were written by Subroutine WTAPEand consist of:

NO. = Matrix numberon tape;

RUNNO. = Run number of problem when matrix was written on
tape;

NAME = Hatrix name;

NROWS = Numberof rows of matrix;

NCOLS = Number of columns of matrix;

DATE = Date when matrix was written on tape;

NNZ - Number of nonzeros (just used in sparse FO_MA

where only nonzeros are used);

PARTITION = Partition number of sparse matrix.

LTAPE

A-4
R. L. Wohlen

May 1971



READ--I/6

Subroutine READreads a matrix of real numbers (a FORTRAN

term for numbers with a decimal point) from either cards or tape

into the computer. The matrix is then printed so that these in-

put data are recorded with the answers of a run. A print sup u

pression option is available for a matrix read from tape. On

option, the matrix read from either cards or tape may be written

on a tape (by Subroutine WTAPE).

The first data card read by Subroutine READ contains the in-.

formation to indicate whether cards or tape will be used. The

info_natlon entered on this card (and subsequent cards for card

input) is given below.

Card Data Input Form

Required entries are denoted by an * symbol below.

entry is optional

Any other

Card Format

Columns Type (I) Entry

First Card 1-6

o=
",4

0.
o

._,.t

7-10

11-15

16-69

m

72

72

73-78

73-78

73-76

73-78

79-80

A

I

I

A

or

A

or

or

or

I

or

*Matrix Name. Will appear

in printout.
*Matrix Row Size.

*Matrix Column Size.

Any remarks to further iden-

tify the input matrix.

$. Only if the Write-Tape

is to be initialized by Sub-

routine INTAPE. The Write-

Tape identification will be
• from card columns 73-78.

Anything other than $ is the

Wrlte-Tape is not to be ini-

tialized.

The Write-Tape identification.

(e.g., T1234). Use with $ in
card column 72.

REWIND. The Write-Tape will

be rewound before being used.

LIST. The Write-Tape will be

listed by Subroutine LTAPE

after the matrix has been

written on the Write-Tape.

Anything else will be ignored.

The Write-Tape Number. (e.g., 21).

Blank if the matrix is not to

be written on tape.
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READ--2/6

Card

Columns

Middle Cards 1-5

6-10

11-27

28-44

45-61

62-78

Last Card i-i0

Format

Type (i) Entry

1

1

E

E

E

E

I

*Row Number of matrix elements

on card.

*Column Number of matrix ele-

ment in first data field.

*First data field with matrix

elements. (2)

*Second data field with matrix

elements. (2)

*Third data field with matrix

elements. (2)

*Fourth data field with matrix

elements. (2)

*Ten zeroes.

Note (I)

Note (2)

Format Type A allows any keypunch symbol.

Format Type I allows only integer numbers right justified

in the field. Format Type E allows only real numbers

(a FORTRAN term for numbers wlth a decimal point) any-

where in the field.

Only nonzero elements need be entered.

As an example of card input to Subroutine READ consider the

following matrix:

[AI*C ]3x6 006il2. 4. 0. O.

7. O. 0. 0.

This matrix is also to be written on tape number 21 that is to

be initialized and identified as T4334. Figure 1 demonstrates

how this information could be written on a coding form to facili-

tate keypunching to cards.
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Tape Data Input Form

Required entries are denoted with an * symbol below. Any

other entry is optional. Only one card is used for each matrix
read.

Card Format

Columns Type (i) Entry

One Card 1-6 A

I0

7-10

11-15 I

16-21

22-27

22-25

22-27

I or

or

or

*Name of matrix to be read

from the Read-Tape.

Zero. The Read-Tape will

move forward from its present

position and search to the

end of the tape. If the

matrix is not found upon the

first end-of-tape encounter,

the tape will automatically
rewind and make one more

pass. If it is not found on

the second end-of-tape en-

counter, an error message

will be printed and the pro-

gram will stop.

Minus the location number of

matrix on the Read-Tape. Tape

will be positioned at the be-

ginning of the location speci-
fied and then continue as

described above for a zero

in column i0.

*The Read-Tape Number. (e.g., ii).

If positive, the matrix read

will be printed in the output.

If negative, the matrix read

will not be printed in the

output.
*Run number of matrix to be

read from the Read-Tape.

REWIND. The Read-Tape will

be rewound before being used.

LIST. The Read-Tape will be

listed by Subroutine LTAPE.

Anything else will be consid-

ered as part of the remarks

described below.

A-8
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o=
.-4

O

m.

&a

Note (1)

Card Format

Columns Type (i)

28-69 A

m

72

72 or

73-78 A

73-78 or

73-76 or

73-78 or

79-80 I

or

Entry

Any remarks to further iden-

tify the input matrix.

$. Only if the Wrlte-Tape

is to be initialized by Sub-

routine INTAPE. The Write-

Tape identification will be

from card columns 73-78.

Anything other than $ if the

Write-Tape is not to be ini-

tialized.

The Write-Tape identification.

(e.g., T1234). Use with $ in

card column 72.

REWIND. The Wrlte-Tape will

be rewound before being used.

LIST. The Write-Tape will

be listed by Subroutine LTAPE

after the matrix has been

written on the Write-Tape.

Anything else will be ignored.

The Write-Tape Number. (e.g., 2i).

Blank if the matrix is not

to be written on tape.

Format Type A allows any keypunch symbol.

Format Type I allows only integer numbers right justi-

fied in the field.

As examples of tape input to Subroutine Read consider:

Example i.

Example 2.

A matrix named AB2 with run number of RUN-46 is to

be read from tape number ii into the computer and

printed. This matrix is also to be written on tape

number 22 that is to be initialized and identified

as T4321.

A matrix named k'YZ4 with run number of TKD is on tape

number 13 twice. The first time is at location 29

and the second time is at location 54. It is desired

to read the second matrix.

Figure 2 demonstrates how these two examples would be written

on a coding form to facilitate keypunching to cards.
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L_

Subroutine READIM reads a matrix of integer numbers from

either cards or tape into the computer. The matrix is then printed

so that these input data are recorded with the answers of a run.

A print suppression option is available for a matrix read from

tape. On option, the matrix read from either cards or tape may

be written on a tape (by Subroutine WTAPE).

_ _ __ i _ ! _

The first data Card read by Subroutine READIM contains the

information to indicate whethe@ _=cards or tape will be used. The

information entered on this card (and subsequent cards for card

input) is given below.

Card Data Input Form

Required entries are denoted by an * symbol below.

entry is optional,

Any other

Card Format

Columns Type (i) Entry

First Card 1-6

w

o

&J

I

4..a
,,r,4

A

7-10 I

11-15 I

16-69 A

72

73-78 A

or

or

or

or

I

or

*Matrix Name. Will appear

in printout.

*Matrix Row Size.

*Matrix Column Size.

Any remarks to further iden-

tify the input matrix.

$. Only if the Write-Tape

is to be initialized by Sub-

routine INTAPE. The Write-

Tape identification will be
from card columns 73-78.

Anything other than $ if the

Wrlte-Tape is not to be ini-

tialized.

The Write-Tape identification.

(e.g., T1234). Use with $

card column 72.

REWIND. The Wrlte-Tape will

be rewound before being used.

LIST. The Wrlte-Tape will

be listed by Subroutine LTAPE

after the matrix has been

written on the Write-Tape.

Anything else will be ignored_

The Wrlte-Tape Number. (e.g., 21).

Blank if the matrix is not

to be written on tape.
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Card

Columns

Middle Cards 1-5

6-10

11-15

16-20

Last Card

Note (i)

Format

Type (1)

I

I

I

I

Entry

etc

76-80

I-i0

*Row Number of matrix elements

on card.

*Column Number of matrix ele-

ment iD first data field•

,First data field with matrix
elements. (2) _

*Second data field with matrix

elements• (2)

*Fourteenth data field with

matrix elements. (2)

*Ten zeroes.

Format Type A allows any keypunch symbol.

Format Type I allows only integer numbers right Justi-

fied in the field.

Note (2) Only nonzero elements need be entered.

As an example of card input to Subroutine KEADIM consider the

following matrix:

02 4 0 0

7 0 0 0

This matrix is also to be written on tape number 21 that is to

be initialized and identified as T4334. Figure i demonstrates

how this information could be written on a coding form to facili-

tate keypunching to cards.
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Tape Data Input Form

Required entries are denoted with an * symbol below. Any

other entry is optional. Only one card is used for each matrix

read.

Card Format

Columns Type (I) Entry

One Card 1-6 A

i0

7-10

11-15 I

16-21

22-27

22-25

22-27

I or

A

or

or

*Name of matrix to be read

from the Read-Tape.

Zero. The Read-Tape will

move forward from its present

position and search to the

end of the tape. If the

matrix is not found upon the

first end-of-tape encounter,

the tape will automatically

rewind and make one more pass.

If it is not found on the

second end-of-tape encounter,

an error message will be

printed and the program will

stop.
Minus the location number of

matrix on the Read-Tape.

Tape will be positioned at

the beginning of the location

specified and then continue
as described above for a zero

in column i0.

*The Read-Tape Number. (e.g., ii).

If positive, the matrix read

will be printed in the output.

_f negative, the matrix read

will not be printed in the

output.
*Run number of matrix to be

read from the Read-Tape.

REWIND. The Read-Tape will

be rewound before being used.

LIST. The Read-Tape will be

listed by Subroutine LTAPE.

Anything else will be con-

sidered as part of the remarks

described below.
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i

!

[

!

i!ii

r

i x
I

n
O
.4

o

,4
&d

Note (i)

Card

Columns

28-69

72

72

73-78

73-78

73-76

73-78

79-80

Format

Type (i)

A

A

u

Entry

Any remarks to further iden-

tify the input matrix.

$. Only if the Wrlte-Tape

is to be initialized by Sub-

routine INTAPE. The Write-

Tape identification will be

from card columns 73-78.

or Anything other than $ if the

Write-Tape is not to be ini-

tialized.

The Write-Tape identification.

(e.g., T1234). Use with $ in

card column 72.

or REWIND. The Wrlte-Tape will

be rewound before being used.

or LIST. The Write-Tape will

be listed by Subroutine LTAPE

after the matrix has been

written on the Wrlte-Tape.

or Anything else will be ignored.
The Wrlte-Tape Number. (e.g., 21).

or Blank if the matrix is not

to be written on tape.

Example i.

Format Type A allows any keypunch symbol.

Format Type I allows only integer numbers right Justi-

fied in the field.

As examples of tape input to Subroutine READIM consider:

A matrix named AB2 with run number of RUN-46 is to

be read from tape number ii into the computer and

printed. Thls matrix is also to be written on tape
number 22 that is to be initialized and identified

as T4321.

Example 2. A matrix named XYZ4 with run number of TKD is on tape
number 13 twice. The first time is at location 29 and

the second time is at location 54. It is desired to

read the second matrix.

Figure 2 demonstrates how these two examples would be written

on a coding form to facilitate keypunching to cards.
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ev,

"6

t"

L"_I

la.

R. L. Wohlen

1971
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Subroutine RTAPE reads a selected matrix fro_ tape (disk) into

the computer core. The matrix to be selected is identified by the

desired run number and matrix name. This procedure is accomplished

by searching the matrix headings (see Subrouti_le WTAPE writeup)

until a matchwith the desired run number and matrix name is ob-

tained and then reading the matrix elements from tape (disk) into

the computer core. The search starts from the currer.t position

(does not rewind) of the tape (disk) and proceeds to the EOT (end

of tape defined in Subroutine WTAPE writeup). If the desired

matrix was not found up0n reaching the EOT, a rewind is performed

and one more search tO the E0T is made. If the desired matrix is

again not found, (i) an error message is printed, (2) a listing

of the matrix headings is printed (see 5ubroutlne LTAPE wrlteup),

and (3) transfer is made to Subroutine ZZBOMB where Lhe program

is terminated.

RTAPD.
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START

Subroutine START performs the following operations:

i) Reads Input Card 1 for the run number (shy keypunch

symbol in card columns 1 thru 6) and the user's name

(any keypunch symbol in card columns ii thru 28).

If the run number is equal to STOP (Card columns 1

thru 4), the run is terminated.

If the run number is not equal to STOP, the run con-
tinues in Subroutine START as follows.

2) Reads Input Card 2 for Title Card i. Any keypunch

symbols may be used in Card columns i thru 72.

3) Reads Input Card 3 for Title Card 2. Any keypunch

symbols may be used in Card columns 1 thru 72.

4) Initializes page number as zero for use in Subroutine

PAGEHD.

5) Interrogates computer for the date.

Run number_ date_ page number, user's name_ Title Card 11 and

Title Card 2 are transferred by a COMMON block labeled LSTART for

use in other subroutines PAGEHD, PLOTI, PLOT2_ PLOT3, and WTAPE.

Subroutine START is used to start each computer run in the

FORMA system and will normally be the first subroutine called in

a computer program. As an example_ pertinent statements from a

program using START could be:

1 CALL START

GO TO 1

END

R. L. Wohlen

May 1971
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Subroutine WRITE writes a matrix of real numbers (a _ortran

term for numbers with a decimal point) on paper. A group of up

to ten consecutive elements from a row of the matrix are printed

on each line. If all 9f _h e elements of a group are zero, printing
of this llne is suppressed.

Each matrix printed begins on a new page. On each page of

printout is the page heading given by Subroutine PAGEHD, the name
of the matrlx, and the row size and column size of the matrix.

This is followed by the matrix data. On any llne of matrix data

the firo_ integer number is the row number of the r,_atrlx elements

on that llne. The second integer number is the column number of

the matrix element in the first data field. The next group of
real numbers (up to ten) are the values of the matrix elements.

This group of matrix elements is given in consecutive column order.
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WRITIM

Subroutine WRITIMwrites a matrix of integer numberson paper.
A group of up to twenty consecutive elements from a row of the
matrix are printed on each line. If all of the elements of a
group are zero, printing of this llne is suppressed.

Eachmatrix printed begins on a new page. On each page of

printout is the page heading given by Subroutine PAGEHD, the name

of the matrix, and the row size and column size of the matrix.

This is followed by the matrix data. On any llne of matrix data

the first integgr number is the row number of the matrix elements

on that llne. The second integer number is the column number of

the matrix element in the first data field. The next group of

integer numbers (up to twenty) are the values of the matrix ele-

ments. This group of matrix elements is given in consecutive

column order.

A-20
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WTAPE--I/2

subroucine' WTAPE:_rites matrix data at the end of existing

written matrix data on a FOPaMA tape (disk is preferred, see below).

Each set of matrix data consists of two logical records. The first

record contains the matrix heading (tape identification, location

number, run number, matrix name, number of rows of _atrix, number

of columns of matrix, date, and the word "dense"). The second

record consists of the matrix elements.

A schematic representation of =he tape (disk) is given by the

followlng sketch.

Beginning

of

tape (disk)

where

H i = Matrix heading of the ith written matrlx,

E. - Matrix elements of the ith written matrix,
1

EOT z End of Tape. Data written by Subroutine WTAPE or

INTAPE that all FORMA tape subroutines recognize as

being the end of written data.

Each vertical line is an end of logical record put on by com-

puter system's routines. The tape is wrltterL in binary form as

opposed to binary coded decimal (BCD) form.

To find the end of written matrix data, a search is made of

the matrix headings until the EOT is found. For this reason, a

"new" tape (disk) must be initialized with Subroutine INTAPE so

that the tape (disk) contains an EOT. A "new" tape (disk) is de-

fined to be a tape (disk) for which it is desired to start writing

matrix data at the front of the tape (disk). Thus, a "new" tape

(disk) could be one with obsolete FORMA matrix data on it as well
as one that has never been written on by the FORFtA system. When

the EOT is found, a backspace operation is done over the EOT, and

then the current matrix heading, current matrix elements, and a

new EOT is written.
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WTAPE--2/2

A disk is preferred to a tape for the following reason. Be-

cause of the physical separation of the read and write heads on

most tape drives there may be tape tolerance problems thus back-

spacing over the EOT is usually not successful. Instead of ending

up positioned in front of the EOT, the write head is often posi-

tioned in front of the previous matrix elements (En in the above

sketch). The current matrix heading will be written over the pre-
vious matrix elements. This causes problems later when trying to

read the records written on the tape. To alleviate this problem,

it is strongly recommended that all FORMA tape subroutines (INTAPE,

LTAPE, RTAPE, WTAPE, and UPDATE) use an intermediate device such

as a disk. At the start of a computer run, the existing tape

should be copied onto the disk by using computer control cards.

Likewise, at the end of the run, the disk should be copied back

onto tape by using computer control cards.

R. L. Wohlen

May 1971
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APPENDIX B -- BASELINE USER-PAK DEFINITION

This appendix presents a listing of the seven subroutines and

two functions which comprise the basic user-supplied packages

required for any simulation.
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